簡易檢索 / 詳目顯示

研究生: 郭致瑋
Kuo, Chih-Wei
論文名稱: 奈米級氧化鋯之相變動力學與燒結性質之研究
Phase transformation kinetics and sintering properties of zirconia nanopowders
指導教授: 申永輝
共同指導教授: 溫紹炳
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 174
中文關鍵詞: 氧化鋯相變動力學晶粒成長燒結鈉鈣磷酸鹽玻璃
外文關鍵詞: zirconia, phase transformation kinetics, crystal growth, sinter, sodium-calcium phosphate glass
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分為「奈米級氧化鋯粉末之合成與燒結性質研究」和「鈉鈣磷酸鹽玻璃/氧化鋯複合體之結構特性」兩個部份。第一個部份主要細分為奈米級氧化鋯粉末之合成參數、相變動力學、晶粒成長機制與燒結性質之研究。第二個部份則為鈉鈣磷酸鹽玻璃的添加對氧化鋯複合體結構特性之影響。
    粉末製備係以ZrOCl2•8H2O和Y(NO3)3•6H2O為原料,利用化學共沉法合成奈米級氧化鋯粉末。研究結果指出,當改變合成參數為:低的初始溶液濃度、高的pH值與反應溫度,則可合成粒徑小且比表面積大之奈米粉末,並以3 wt%的PEG當分散劑之分散效果較佳。
    經由非恆溫結晶動力學之探討,可發現3Y-PSZ奈米粉末的相形成溫度約為700 K,其結晶活化能為401.89 kJ/mol,由結晶成長形態指數與反應機制指數判斷,為三維的體成核機制。利用XRD分析發現,當煆燒溫度為773 - 1073 K時,單斜相氧化鋯的晶粒成長指數由2.37增至2.89,顯示晶粒成長之形狀接近圓球狀,亦由SEM與TEM顯微結構觀察得知,3Y-PSZ之晶粒大小約為10 - 20 nm,而結晶團簇的大小約為50 nm。
    然而,奈米級氧化鋯的晶粒成長活化能會隨Y2O3穩定劑的添加量增加而增加,且奈米級氧化鋯的晶粒成長為「晶粒旋轉驅動晶粒成長」的機制,藉由熱驅使晶粒旋轉,使兩晶粒的結晶取向具有一致性,結合後造成晶粒變大。此外,4YSZ在1673 K燒結2小時便可燒結緻密,相對密度>98%,抗彎強度為722±30 MPa。
    另外,將鈉鈣磷酸鹽玻璃粉末與商用氧化鋯粉末混合燒結,當鈉鈣磷酸鹽的添加量由0至5 wt%,在1673 K燒結2小時後,氧化鋯複合體的結構由100%的正方相,部份轉變成立方相和單斜相;當添加量由5增至20 wt%時,氧化鋯的主要結構由正方相轉變為單斜相,並於燒結過程中產生少量的HA、Ca(PO3)2、Ca2P2O7和TCP。此外,隨鈉鈣磷酸鹽的添加量增加,其氧化鋯複合體之密度與機械性質下降,然而,未添加鈉鈣磷酸鹽玻璃之氧化鋯燒結體在1673 K燒結2小時後,其密度、硬度和破裂韌性分別為6.03 g/cm3,15.09 GPa和6.12±0.10 MPa•m1/2。

    The objective of this study is mainly divided into “preparation and sintering properties of zirconia nanopowders” and “structural properties of sodium-calcium phosphate and zirconia composites”. In the first section, we investigate on the synthesis and colloidal processing of zirconia nanopowder, phase transformation kinetics, crystal growth mechanism and sintering properties. In the second section, the effect of sodium-calcium phosphate addition on the structure of zirconia composites is investigated.
    A crystalline nanopowder of 3Y-PSZ has been synthesized using ZrOCl2•8H2O and Y(NO3)3•6H2O as raw materials by a co-precipitation process. Results shown that the surface area increased with reducing crystalline size, low initial solution concentration, high pH and reaction temperature, increase surface area increasing and crystallite size decreasing. In addition, the amount of 3 wt% PEG had better dispersive in this study.
    It is noted that the crystallization temperature and formation activation energy of the 3Y-PSZ nanopowders estimated by DTA/TG are about 700 K and 401.89 kJ/mol, respectively. The results of XRD patterns show that the isothermal crystal growth morphology parameter (n) of m-ZrO2 increased from 2.37 to 2.89, when the 3Y-PSZ are calcined at 773 - 1073 K for 2 h, corresponds to the spherical growth from a constant number of nuclei. A nanocrystallite size distribution between 10 and 20 nm and nanocrystallite clusters appearance of around 50 nm are obtained in SEM and TEM observations.
    The growth activation energy of the nanocrystallites increased with increasing amount of Y2O3 addition. It can be seen that the crystalline orientation of the zirconia grains was the same by the rotation of particles during heat treatment, resulting in the occurrence of larger crystallites. It seems to note that the nanocrystalline zirconia has been in control of the mechanism of the driving force of grain rotation. Moreover, the bending strength of high dense 4YSZ sintered at 1673 K for 2 h is 722±30 MPa.
    Besides, commercial zirconia nanopowders mixed with various amounts of sodium-calcium phosphate were prepared and sintered at different temperatures for 2 h in air. The results show that the main formation of t-ZrO2 transformed into parts of c-ZrO2 and m-ZrO2. When the composites with 0 to 5 wt% sodium-calcium phosphate sintered at 1673 K for 2 h; where as the composites with 5 to 10 wt% sodium-calcium phosphate consist of m-ZrO2 as predominant phase and a lesser amounts of HA, Ca(PO3)2, Ca2P2O7 and TCP as minor phases. The mechanical properties of the composites decreased with an increase in amount of sodium-calcium phosphate. The density, hardness and toughness of the zirconia sinter without sodium-calcium phosphate addtion fired at 1673 K for 2 h, are 6.03 g/cm3, 15.09 GPa and 6.12±0.10 MPa•m1/2, repectively.

    摘要 I Abstract III 誌謝 VI 總目錄 VII 圖目錄 XII 表目錄 XIX 第一章 緒論 1 1.1 生醫材料 1 1.2 牙科材料 4 1.3 氧化鋯的特性 8 1.4 生醫玻璃 13 1.5 研究動機 14 1.6 研究目的 17 第二章 理論基礎與前人研究 20 2.1 氧化鋯之應用 20 2.2 玻璃 21 2.2.1 玻化反應 22 2.2.2 磷酸鈣玻璃結構之推論 23 2.3 動力學原理 28 2.3.1 熱分析與非恆溫結晶動力學 28 2.3.2 X光繞射定量分析與成長動力學 31 2.3.3 恆溫結晶動力學 32 2.4 固相燒結理論 34 2.4.1 傳統燒結過程 34 2.4.2 奈米陶瓷粉末燒結緻密化 37 2.4.3 液相燒結 37 第三章 分析方法 42 3.1 粉末性質分析 42 3.1.1 熱差/熱重分析(DTA/TG) 42 3.1.2 X-光繞射分析(XRD) 42 3.1.3 氮氣等溫吸附/脫附量測 43 3.1.4 表面電位及粒徑分析 44 3.1.5 掃描式電子顯微分析(SEM) 44 3.1.6 穿透式電子顯微分析(TEM) 44 3.2 燒結體性質分析 44 3.2.1 密度量測 44 3.2.2 孔隙率量測 45 3.3.3 線性收縮率 46 3.2.4 燒結體之晶相分析 46 3.2.5 SEM顯微結構分析 46 3.2.6 熱膨脹係數量測 47 3.2.7 硬度測試 47 3.2.8 四點彎曲強度測試法 48 第四章 製程參數對奈米級氧化鋯粉末合成之影響 49 4.1 前言 49 4.2 粉末製備 50 4.3 結果與討論 52 4.3.1 反應機制 52 4.3.2 溶劑之影響 53 4.3.3 初始原料的濃度之影響 54 4.3.4 pH值之影響 56 4.3.5 反應溫度之影響 56 4.3.6 分散劑之影響 61 4.4 小結 62 第五章 3Y-PSZ奈米粉末之相變動力學之研究 67 5.1 前言 67 5.2 研究方法概述 68 5.3 結果與討論 68 5.3.1 相的鑑定與熱行為 68 5.3.2 結晶動力學 71 5.3.3 恆溫相變 74 5.3.4 3Y-PSZ奈米粉末的微結構 88 5.4 小結 91 第六章 氧化釔添加量對氧化鋯晶粒成長與燒結特性之研究 93 6.1 前言 93 6.2 實驗方法 93 6.2.1 粉末製備 93 6.2.2 氧化鋯生坯之製備 94 6.3 結果與討論 94 6.3.1 熱行為與相鑑定 94 6.3.2 成長動力學 99 6.3.3 奈米晶粒的成長機制 113 6.3.4 燒結性質 114 6.4 小結 122 第七章 鈉鈣磷酸鹽玻璃的添加對氧化鋯燒結性質之影響 124 7.1 前言 124 7.2 研究方法 126 7.2.1 玻璃粉末製備 126 7.2.2 試樣之製備 126 7.3 結果與討論 129 7.3.1 相的鑑定 129 7.3.2 鈉鈣磷酸鹽的添加對緻密性之影響 137 7.3.3 元素分佈情形 143 7.3.4 鈉鈣磷酸鹽的添加對機械性質之影響 145 7.4 小結 154 第八章 結論與建議 155 8.1 結論 155 8.2 建議 157 參考文獻 158 自述 172

    [1] S.D. Bruck, “Properties of biomaterials in the physiological environment” CRC Press. Inc., Boca Raton, Florida, p.1, (1980).
    [2] L.L. Hench, “Bioceramics: from concept to clinic” J. Am. Ceram. Soc., 74, 1487 (1991).
    [3] C.C. Pan, S.W. Yeh, “Fracture resistance of dental all-ceramic crown and brigde” J. Dent. Sci., 29-2, 28 (2009).
    [4] H.J. Conrad, W.J. Seong, I.J. Pesun, “Current ceramic materials and systems with clinical recommendations: a systematic review” J. Prosthet Dent., 98, 389 (2007).
    [5] C. Piconi, G. Maccauro, “Zirconia as a ceramic biomaterial” Biomaterals, 20, 1 (1999).
    [6] E. C. Subbarao, “Zirconia- an overview” Adv. Int. Ceram., 3, 1 (1981).
    [7] A. Kumar, D. Rajdev, “Effect of oxide defect structure on the electrical properties of ZrO2” J. Am. Ceram. Soc., 55, 439 (1972).
    [8] M. M. Nasrallah, D. L. Douglas, “Ionic and electronic conductivity in Y2O3-doped monclinic ZrO2” J. Electrochem. Soc., 6, 255 (1974).
    [9] R. Riedel, “Handbook of ceramic hard materials” Wiley-Vch, V1, (2004).
    [10] G. M. Wolten, “Diffusionless phase transformations in zirconia and hafnia” J. Am. Ceram. Soc., 46, 418 (1963).
    [11] A. H. Heuer, “Stability of tetragonal ZrO2 particles in ceramic matrices” J. Am. Ceram. Soc., 65, 642 (1982).
    [12] A. G. King, P. J. Yavorsky, “Stress relief mechanisms in magnesia and yttria stabilized zirconia” J. Am. Ceram. Soc., 51, 38 (1968).
    [13] Y. Sakka, T.S. Suzuki, T. Matsumoto, K. Morita, K. Hiraga, Y. Moriyoshi, “Effect of titania and magnesia addition to 3 mol% yttria doped tetragonal zirconia on some diffusion related phenomena” Solid State Ionics, 172, 499 (2004).
    [14] N. Claussen, “Stress-induced transformation of tetragonal ZrO2 partical in ceramic matrices” J. Am. Ceram. Soc., 61, 85 (1978).
    [15] E. P. Butler, “Transformation toughned zirconia ceramics” Mat. Sci. Tech., 1, 417 (1985).
    [16] P. J. Steiner, R. J. Kelly, A. A. Giuseppetti, “Compatibility of ceramic-ceramic system for fixed prosthodontics” Int. J. Prosthod, 10, 375 (1997).
    [17] K. Noguchi, M. Fujita, T. Masaki, M. Mizushina, “Tensile strength of yttria-stabilized tetragonal zirconia polycrystals” J. Am. Ceram. Soc., 72, 1305 (1989).
    [18] R. C. Garvie, P. S. Nicholson, “Phase analysis in zirconia systems” J. Am. Ceram. Soc., 55, 303 (1972).
    [19] M. Hasegawa, M. Watabe, K. Hoshino, “Size dependence of melting point in small particles” Surf. Sci., 256, 1425 (1981)
    [20] I. W. Chen, Y. H. Chiao, “Martensitic nucleation in ZrO2” Acta Metall., 31, 1627 (1983).
    [21] D. Huang, K. R. Venkatachari, G. C. Stangle, “Influence of yttria content on the preparation of nanocrystalline yttria-doped zirconia” J. Mater. Res., 10, 762 (1995).
    [22] J. Karch, R. Birringer, H. Gleiter, “Ceramics ductile at low temperature” Nature, 330, 556 (1987).
    [23] J.M. Lin, M.C. Hsu, K.Z. Fung, “Deposition of ZrO2 film by liquid phase deposition” J. Power Sources, 159, 49 (2006).
    [24] I.M. Hung, D.T. Hung, K.Z. Fung, M.H. Hon, “Effect of calcination temperature on morphology evolution of mesoporous YSZ” J. Euro. Ceram. Soc., 26, 2627 (2006).
    [25] C.C.T. Yang, W.C.J. Wei, A. Roosen, “Electrical conductivity and microstructures of La0.65Sr0.3Mn3 - 8 mol% yttria-stabilized zirconia” Mater. Chem. Phy., 81, 134 (2003).
    [26] C.C.T. Yang, W.C.J. Wei, A. Roosen, “Reaction kinetics and mechanism between La0.65Sr0.3MnO3 and 8 mol% yttria-stabilized zirconia” J. Am. Ceram. Soc., 87, 1110 (2004).
    [27] K.L. Lin, C.C. Lin, “Zirconia-related phases in the zirconia/titanium diffusion couple after annealing at 1100°-1550°C” J. Am. Ceram. Soc., 88, 2928 (2005).
    [28] K.L. Lin, C.C. Lin, “Microstructural evolution and formation mechanism of the interface between titanium and zirconia annealed at 1550°C” J. Am. Ceram. Soc., 89, 1400 (2006).
    [29] T.C. Wang, R.Z. Chen, W.H. Tuan, “Effect of zirconia addition on the oxidation resistance of Ni-toughened Al2O3” J. Euro. Ceram. Soc., 24, 833 (2004).
    [30] T. Kosmac, C. Oblak, P. Jevnikar, N. Funduk, “The effect of grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic” Dental Mater., 15, 426 (1999).
    [31] M. Guazzato, M. Albakry, S.P. Ringer, M.V. Swain, “Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics” Dental Mater., 20, 449 (2004).
    [32] J. Zhou, J. Mah, P. Shrotriya, C. Mercer, W.O. Soboyejo, “Contact damage in an yttria stabilized zirconia: Implications for biomedical applications” J. Mater Sci.: Materials in Medicine, 18, 71 (2007).
    [33] P. Pittayachawan, A. McDohald, A. Petrie, J.C. Knowles, “The biaxial flexural strength and fatigue property of LAVA Y-TZP dental ceramic” Dental Mater., 23, 1018 (2007).
    [34] E.C. Teixeira, J.R. Piascik, B.R. Stoner, J.Y. Thompson, “Dynamic fatigue and strength characterization of three ceramic materials” J. Mater. Sci.: Mater Med., 18, 1219 (2007).
    [35] Y.Li, Y. Xie, J. Gong, Y. Chen, Z. Zhang, “Preparation of Ni/YSZ materials for SOFC anodes by buffer-solution method” Mater. Sci. Eng. B: Solid-State Materials for Advanced Technology, 86, 119 (2001).
    [36] J.L. Woodhead, “Science of Ceramics” Bri. Ceram. Soc., 4, 105 (1968).
    [37] J. W. Mclean, T. H. Hulghes, “The reinforcement of dental porcelain with ceramic oxides” Br. Dent. J., 119 (1965).
    [38] L.L. Hench, O. Anderson, In: An introduction to bioceramics, ed. L.L. Hench, J. Wilson, World Scientific. Singapore, 41 (1993).
    [39] M. Karabulut, E. Metwalli, D.E. Day, R.K. Brow, “Mossbauer and IR investigations of iron ultraphosphate glasses” J. Non-Cryst. Solids, 328, 199 (2003).
    [40] H.S. Liu, T.S. Chin, S.W. Yung, “FTIR and XPS studies of low melting PbO-ZnO-P2O5 glasses” Mater. Chem. Phys., 50, 1 (1997).
    [41] 董國忠,”低鈣磷莫耳比磷酸鈣玻璃之結晶性及物性研究”,中原大學化學研究所碩士論文,24 (1995).
    [42] E.S. Freeman, B. Carroll, “The application of thermoanalytical techniques to reaction kinetics. The thermogravimetric evaluation of the kinetic of the decomposition of calcium oxalate monhydrate” J. Phy. Chem., 62, 394 (1958).
    [43] H.J. Borchardt, F. Danields, “The application of differential thermal analysis to the study of reaction kinetics” J. Am. Chem. Soc., 79, 41 (1957).
    [44] A.R. Boccaccini, T.K. Khalil, M. Bűcker, “Activation energy for the mullitization of a diphasic gel obtained from fumed silica and boehmite sol” Mater. Lett., 38, 116 (1999).
    [45] A.L. Campos, N.T. Silva, F.C.L. Melod, M.A.S. Oliveria, “Crystallization kinetics of orthorhombic mullite from diphasic gels” J. Non-Cryst. Solids, 304, 19 (2002).
    [46] F.S. Yen, M.Y. Wang, J.L. Chang, “Temperature reduction of θ- to α-phase transformation induced by high-pressure pretreatments of nano-size alumina powders derived from boehmite” J. Cryst. Growth, 236, 197 (2002).
    [47] F.S. Yen, J.L. Chang, P.C. Yu, “Relationships between DTA and DIL characteristics of nano-size alumina powder during θ- to α-phase transformation” J. Cryst. Growth, 246, 90 (2002).
    [48] Y.F. Chen, M.C. Wang, M.H. Hon, “Phase transformation and growth of mullite in kaolin ceramics” J. Euro. Ceram. Soc., 24, 2389 (2004).
    [49] A. Marotta, A. Buri, G. L. Valenti, “Crystallization kinetics of gehlentite glass” J. Mater. Sci., 13, 2483 (1978).
    [50] A. Marotta, A. Buri, “Kinetics of devitrification and differential thermal analysis” Thermo. Acta. 25, 155 (1978).
    [51] K. Matusita, S. Sakka, T. Maki, M. Tashiro, “Study on crystallization of glass by differential thermal analysis. Effect of added oxide on crystallization of LiO2-SiO2 glasses” J. Mater. Sci., 10, 94 (1975).
    [52] K. Matusita, S. Sakka, “Kinetic study of the crystallization of glass by differential scanning calorimetry” Phys. Chem. Glasses, 20, 81 (1979).
    [53] K. Matusita, M. Tashiro, “Rate of homogeneous nucleation in alkali disilicate glasses” J. Non-Cryst. Solids, 11, 471 (1973).
    [54] K. Matusita, T. Maki, M. Tashiro, “Effect of added oxides on the crystallization and phase separation of Li2O-3SiO2 glasses” Phys. Chem. Glasses, 15, 106 (1974).
    [55] K. Matusita, S. Sakka, Y. Matsui, “Determination of the activation energy for crystal growth by differential thermal analysis” J. Mater. Sci., 10, 961 (1975).
    [56] K. Matusita, M. Tashiro, “Effect of added oxides on the crystallization of Li2O-2SiO2 glasses” Phys. Chem. Glasses, 14, 77 (1973).
    [57] 許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,271 (1996).
    [58] S.G. Chen, Y.S. Yin, D.P. Wang, J.Li, “Reduced activation energy and crystalline size for yttria-stabilized zirconia nano-crystals: an experimental and theoretical study” J. Cryst. Growth, 267, 100 (2004).
    [59] S.B. Wen, N.C. Wu, S. Yand, M.C. Wang, “Effect of TiO2 addition on the crystallization of Li2O-Al2O3-4SiO2 precursor powders by a sol-gel process” J. Mater. Res., 14, 3559 (1999).
    [60] M. Avrami, “Kinetics of phase change. I general theory” J. Chem. Phys., 7, 1103 (1939).
    [61] S.W. Freiman, L.L. Hench, “Kinetics of crystallization in Li2O-SiO2 glasses” J. Am. Ceram. Soc., 51, 382 (1968).
    [62] R.L.Coble, “Sintering crystalline solids: II, experimental test of diffusion models in powder compacts” J. Appl. Phys, 32, 793 (1961).
    [63] M. F. Ashby, “A first report on sintering diagrams” Acta Metal, 22, 275 (1974).
    [64] P.L.Chen, I.W.Chen, “Sintering of fine oxide powders: II, sintering mechanisms” J. Am. Ceram. Soc., 80, 637 (1997).
    [65] M. Q. Li, G. L. Messing, “Ceramic Transcation” Ceramic Powder Science III, 12, 129 (1990).
    [66] W. Li, L. Gao, “Nano ZrO2 (Y2O3) particles processing by heating of ethanol-aqueous salt solutions” Ceram. Inter., 27, 543 (2001).
    [67] Y. T. Moon, H. K. Park, D. K. Kin, “Preparation of monodisperse and spherical zirconia powders by heating of alcohol-aqueous salt solutions” J. Am. Ceram. Soc., 78, 2690 (1995).
    [68] C.R. Reid, J.M. Prausnitz, T.K. Sherwood, “The properties of gases and liquids” 3rd ed., McGraw-Hill, New York (1977).
    [69] N. Mizutani, “Ceramic processing before firing: powder preparation from solution” Seramikkusu, 16, 774 (1981).
    [70] F. Franks, “Water-a comprehensive treatise” Plenum Press, New York, 2, 405 (1973).
    [71] W. Li, L. Gao, J.K. Guo, “Synthesis of yttria-stabilized zirconia nanoparticles by heating of alcohol-aqueous salt solutions” Nanostructured Mater., 10, 1043 (1998).
    [72] A. Bleier, R.M Cannon, “Nucleation and growth of uniform m-ZrO2” Mat. Res. Soc. Symp. Proc., 73, 71 (1986)
    [73] H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, “Hydrohyapatite synthesized by a simplified hydrothermal method” Ceram. Int., 23, 19 (1997).
    [74] F.Q. Tang, X.X. Huang, Y.F. Zhang, J.K. Guo, ”Effects of dispersants on surfaces chemical properties of nano-zirconia suspensions” Ceram. Int., 26, 93 (2000).
    [75] R.C. Garvie, R.H. Hannink, R.T. Pascoe, “Ceramic steel” Nature, 258, 703 (1975).
    [76] T. Sato, M. Shimada, “Control of the tetragonal to monoclinic phase transformation of yttria partially stabilized zirconia in hot water” J. Mater. Sci., 20, 3988 (1985).
    [77] E. Kato, M. Hirano, Y. Kobaashi, K. Asoh, M. Mori, M. Nakata, “Preparation of monodisperse zirconia particles by thermal hydrolysis in highly concentrated solutions” J. Am. Ceram. Soc., 79, 972 (1996).
    [78] J. D. Lin, J. G. Duh, “Coprecipitation and hydrothermal synthesis of ultrafine 5.5 mol% CeO2-2mol% YO1.5-ZrO2 powders” J. Am. Ceram. Soc., 80, 92 (1997).
    [79] E.D. Whitney, “Kinetics and mechanism of the transition of metastable tetragonal to monoclinic zirconia” Trans. Faraday Soc., 61, 1991 (1965).
    [80] H.S. Maiti, K.V.G.K. Gokhale, E.C. Subbarao, “Kinetics and burst phenomenon in ZrO2 transformation,” J. Am. Ceram. Soc., 55, 317 (1972).
    [81] I. Műller, W. Műller, “Size effect on transformation temperature of zirconia powders and inclusions” in Science and Technology of Zirconia II, by N. Claussen, M. Rűhle, A.H. Heuer, The American Ceramic Society, Inc. Columbus, Ohio, 443 (1984).
    [82] T.G. Neigh, J. Wadsworth, “Superelastic behaviour of a fine-grained, yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP)” Acta Metall. Mater., 38, 1121 (1990).
    [83] P. Durán, J. Tartaj, J.F. Fernández, M. Villegas, C. Moure, “Crystallisation and sintering behaviour of nanocrystalline Y-TZP powders obtained by seeding-assisted chemical coprecipitation” Ceram. Inter., 25, 125 (1999).
    [84] N. Igawa, T. Nagasaki, Y. Ishii, K. Noda, H. Ohno, Y. Morii, J.A. Fernandez-Baca, “Phase-transformation study of metastable tetragonal zirconia powder” J. Mater. Sci., 33, 4747 (1998).
    [85] G. Rauchs, T. Fett, D. Munz, R. Oberacker, “Tetragonal to monoclinic phase transformation in CeO2-stabilised zirconia under uniaxial loading” J. Euro. Ceram. Soc., 21, 2229 (2001).
    [86] P.M. Kelly, L.R.R. Francis, “The martensitic transformation in ceramics-its role in transformation toughening” Progress in Materials Science, 47, 463 (2002).
    [87] E.C. Subbaro, H.S. Maiti, K.K. Srivastava, “Martensitic transformation in zirconia” Phys. Status Solidi (A): Appl. Res., 21, 9 (1974).
    [88] T.K. Gupta, J.H. Bechtold, R.C. Kuznicki, L.H. Cadoff, B.R. Rossing, “Stabilization of tetragonal phase in polycrystalline zirconia” J. Mater. Sci., 12, 2421 (1971).
    [89] T. Mitsuhashi, M. Ichihara, U. Tatsuke, “Characterization and stabilization of metastable tetragonal ZrO2” J. Am. Ceram. Soc., 57, 97 (1974).
    [90] Z. Strnad, “Glass-ceramic materials” (Elsevier, Amsterdam), 63 (1986).
    [91] C.W. Kuo, Y.H. Lee, I.M. Hung, M.C. Wang, S.B. Wen, K.Z. Fung, C.J. Shih, “Crystallization kinetics and growth mechanism of 8mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process” J. Alloys and Compounds, 453, 470 (2007).
    [92] W.Z. Zhu, M. Yan, “Effect of grain size on the kinetics of isothermal tetragonal to monoclinic transformation in ZrO2 (2 mol%Y2O3) ceramics” J. Euro. Ceram. Soc., 17, 1729 (1997).
    [93] W.Z. Zhu, “Effect of cubic phase on the kinetics of the isothermal tetragonal to monoclinic transformation in ZrO2 (3mol% Y2O3) ceramics” Ceram. Inter., 24, 35 (1998).
    [94] S. Ramanathan, R.V. Muraleedharan, S.K. Roy, P.K.K. Nayar, “Dehydration and crystallization kinetics of zirconia-yttria gels” J. Am. Ceram. Soc., 78, 429 (1995)
    [95] W.Z. Zhu, T.C. Lei, Y. Zhou, “Time-dependent tetragonal to monoclinic transition in hot-pressed zirconia stabilized with 2 mol% yttria” J. Mater. Sci., 28, 6479 (1993).
    [96] R.P. Denkewicz, Jr., K.S.T. Huisen, J.H. Adair, “Hydrothermal crystallization kinetics of m-ZrO2 and t-ZrO2” J. Mater. Res., 5, 2698 (1990).
    [97] J. Chevalier, “Low-temperature aging of Y-TZP ceramics” J. Am. Ceram. Soc., 82, 2150 (1999).
    [98] V. Lughi, D.R. Clarke, “Low-temperature transformation kinetics of electron-beam deposited 5 wt% yttria-stabilized zirconia” Acta Mater., 55, 2049 (2007).
    [99] R. C. Garvie, “The Occarrence of metastable tetragonal zirconia as a crystalline effect” J. Phys. Chem., 69, 1238 (1965).
    [100] R. C. Garvie, “Stabilization of the tetragonal structure in zirconia microcrystals” J. Phys. Chem., 82, 218 (1978).
    [101] Y.H. Lee, C.W. Kuo, I.M. Hung, K.Z. Fung, M.C. Wang, “The thermal behavior of 8mol% yttria-stabilized zirconia nanocrystallites prepared by a sol-gel process” J. Non-Cryst. Solids, 351, 3709 (2005).
    [102] A.K. Demyanets, R. Chaim, “Grain growth control in nanocrystalline oxide ceramics” Nanostructured Mater., 6, 851 (1999).
    [103] A.P. Hynes, R.H. Doremus, R.W. Siegel,” Sintering and characterization of nanophase zinc oxide” J. Am. Ceram. Soc., 85, 1979 (2002).
    [104] J.K. Lai, C.H. Shek, G.M.J. Lin, “Grain growth kinetics of nanocrystalline SnO2 for long-term isothermal annealing” Scr. Mater., 49, 441 (2003).
    [105] S. Fabris, A.T. Paxton, M.W. Finnis, “A stabilization mechanism of zirconia based on oxygen vacancies only” Acta. Mater. 50, 5171 (2002).
    [106] K.F. McCarty, J.A. Nobel, N.C. Bartelt, “Vacancies in solids and the stability of surface morphology” Nature, 412, 622 (2001).
    [107] R.L. Coble, “Sintering crystalline solids II. Experimental test of diffusion models in powder compacts” J. Appl. Phys., 32, 787 (1961).
    [108] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to Ceramic” (John Wiley and Sons, New York), 354 (1976).
    [109] E. Robert, Reed-Hill, “Physical metallurgy principles” Pws publishing company, 262 (1991).
    [110] J. E. Burke, D. Turnbull, “Recrystallization and grain growth” Progr. Met. Phys. 3, 220 (1952).
    [111] R.D. Vengrenvitch, “On the ostwald ripening theory” Acta. Metall. 30, 1079 (1982).
    [112] H. Zhang, J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate depending on number of particles” American Mineralogist, 84, 528 (1999).
    [113] D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, “Scaling behavior of grain-rotation-induced grain growth” Phys. Rev. Lett. 89, 206101 (2002).
    [114] X. Liang, Y. Qiu, S. Zhou, X. Hu, G. Yu, X. Deng, “Preparation and properties of dental zirconia ceramics” J. Univ. Sci. Technol. Beijing, 15, 764 (2008).
    [115] Z. Evis, C. Ergun, R.H. Doremus, “Hydroxylapatite-zirconia composites: thermal stability of phases and sinterability as related to the CaO-ZrO2 phase diagram” J. Mater. Sci., 40, 1127 (2005).
    [116] K. Yamashita, T. Kobayashi, M. Kitamura, T. Umegaki, T. Kanazawa, “Effect of water vapor on the solid-state reaction between hydroxyapatite and zirconia or CaO-PSZ” J. Ceram. Soc. Jpn., 96, 616 (1988).
    [117] M. Inuzuka, S. Nakamura, S. Kishi, K. Yoshida, K. Hashimoto, Y. Toda, K. Yamashita, “Hydroxyapatite-doped zirconia for preparation of biomedical composites ceramics” Solid State Ion., 172, 509 (2004).
    [118] C.B. Ponton, R.D. Pawlings, “Vickers indentation fracture toughness test part I: review of literature and formulation of standised indentation toughness equations” J. Mater. Sci. and Tech., 5, 865 (1989).
    [119] C.B. Ponton, R.D. Pawlings, “Vickers indentation fracture toughness test part II: application and critical evaluation of standardized indentation toughness equations” J. Mater. Sci. and Tech., 5, 961 (1989).
    [120] J.C. Glandus, T. Rouxel, Q. Tai, “Study of the Y-TZP toughness by an indentation method” Ceram. Int., 17, 129 (1991).
    [121] R.L.K. Matsumoto, “Evaluation of fracture toughness determination methods as applied to ceria-stabilized tetragonal zirconia polycrystal” J. Am. Ceram. Soc., 70, C366 (1987).
    [122] K. Niihara, R. Moreno, D.P.H. Hasselman, “Evaluation of KIC of brittle solids by the indentation method” J. Mater. Sci. Lett., 1, 13 (1982).
    [123] A.R. Boccaccini, “The Relationship between wear behaviour and brittleness index in engineering ceramics and dispersion-reinforced ceramic composites” Interceram, 48, 176 (1999).
    [124] W. Li, H. Zhao, Y. Song, B. Su, F. Wang, “Mechanical properties of machinable zirconia dental composites” Key Eng. Mater., 336, 1587 (2007).
    [125] X.H. Jin, X. Ding, W.B. Jiang, Y.R. Chen, “The influence of pentavalent transition metal oxide on the microstructure and properties of Y-TZP” Bull. Chinese Ceram. Soc., 2, 52 (1999).

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE