| 研究生: |
蔡捷軒 Tsai, Jie-Shiuan |
|---|---|
| 論文名稱: |
線性偏振相關或無關之圓孔型電極液晶透鏡組合玻璃透鏡製作之全息光學元件的效能 Performance of holographic optical elements fabricated by means of a glass lens combined with a hole-patterned electrode liquid crystal lens with or without linear polarization-dependence |
| 指導教授: |
許家榮
Sheu, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 液晶透鏡 、全息光學元件 、菲涅耳區圖樣 |
| 外文關鍵詞: | Liquid crystal lens, Holographic optical elements, Fresnel zone pattern |
| 相關次數: | 點閱:57 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討線性偏振相關性之負型液晶透鏡結合玻璃凸透鏡用於製作全息光學元件(Holographic Optical Elements, HOEs)的性能影響。
實驗使用負型液晶搭配圓孔型銦錫氧化物(Indium Tin Oxide, ITO)電極製作液晶透鏡並利用有無磨刷配向達成線性偏振相關與無關的光學性能。實驗結果顯示液晶透鏡結合較小焦距之玻璃凸透鏡可以獲得較理想的菲涅耳區圖樣(Fresnel Zone Pattern)於全息光學元件中。
偏振相關液晶透鏡組合玻璃凸透鏡的焦點輪廓(Focus Profile)相較於偏振無關液晶透鏡組合玻璃凸透鏡要略好一些。兩種透鏡組所製作之全息光學元件其重建焦點情形,可以發現偏振相關透鏡組容易產生雜訊。在推測雜訊成因可能是液晶的雙折射性質以後,實驗開始對比偏振相關液晶透鏡與偏振無關液晶透鏡在改變雷射偏振角度的情況下,是否對製作全息光學元件有不同的影響。
實驗發現線性偏振相關透鏡組所製作的全息光學元件產生的雜訊會隨著雷射光偏振角度與液晶透鏡配向方向的夾角增加而增加,確定偏振相關液晶透鏡由於對偏振光的敏感度較高,容易因為其雙折射性質造成在全息錄製時將尋常光(Ordinary Ray)與非尋常光(Extraordinary Ray)分開進行錄製,從而在全相片上留下多重信息導致後續進行焦點重建時產生影像雜訊。而線性偏振無關之液晶透鏡樣品,則因為其對偏振光不敏感,故可以明顯改善線性偏振液晶樣品產生的影像雜訊問題。
In this thesis, the linear polarization-relationship of concave hole-patterned electrode liquid crystal lenses (HPELCLs) were used to fabricate holographic optical elements (HOEs), to investigate effects on optical performance. Consequently, better Fresnel zone patterns in the HOEs are available if they are fabricated via compound lenses with a liquid crystal lens and a shorter focal glass lens.
The experiment showed that noise appears in the hologram reconstruction process when a polarization-dependent liquid crystal lens is used in the fabrication process. The subsequent experiment showed that the noise was created by the birefringence of the liquid crystal lens, resulting in a double exposure on the photopolymer film. The holographic optical elements fabricated using polarization-independent liquid crystal lens shows no obvious noise in the reconstruction process compared to those using polarization-dependent liquid crystal lenses because of the insensitivity to the light polarization.
[1] Li, Gang, et al. “Holographic Display for See-through Augmented Reality Using Mirror-Lens Holographic Optical Element.” Optics Letters, vol. 41, no. 11, p. 2486 (2016)
[2] GABOR, D. “A New Microscopic Principle,” Nature, vol. 161, no. 4098, (1948)
[3] Hong, Keehoon, et al. “Full-Color Lens-Array Holographic Optical Element for Three-Dimensional Optical See-through Augmented Reality.” Optics Letters, vol. 39, no. 1, p. 127 (2013)
[4] Yamagishi, Sena, et al. “Magneto-Optical Holographic 3D Display with Wide Viewing Angle Using Microlens Array and Digital Mirror Device.” Japanese Journal of Applied Physics, vol. 62, no. SB, (2022)
[5] Lin, Y.-H., Wang, Y.-J., & Reshetnyak, V. Liquid crystal lenses with tunable focal length. Liquid Crystals Reviews, 5(2), 111–143. (2017)
[6] Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Master, 21. 643-646. (2002)
[7] Sato, Susumu. “Liquid-Crystal Lens-Cells with Variable Focal Length.” Japanese Journal of Applied Physics, vol. 18, no. 9, pp. 1679–1684 (1979)
[8] Ye, Mao, and Susumu Sato. “Liquid Crystal Lens of Two Liquid Crystal Layers.” Molecular Crystals and Liquid Crystals, vol. 422, no. 1, pp. 197–207 (2004)
[9] Lin, Yi-Hsin, et al. “Polarizer-Free and Fast Response Microlens Arrays Using Polymer-Stabilized Blue Phase Liquid Crystals.” Applied Physics Letters, vol. 96, no. 11, p. 113505 (2010)
[10] Hsu, Che-Ju, et al. “Polarization-Insensitive Liquid Crystal Microlens Array with Dual Focal Modes.” Optics Express, vol. 22, no. 21, p. 25925, (2014)
[11]松本正一、角田市良合著,“液晶之基礎與應用”第八版,第四章,國立編譯館,民國94年
[12] Repnik, R, et al. “Physics of Defects in Nematic Liquid Crystals.” European Journal of Physics, vol. 24, no. 4, pp. 481–492 (2003)
[13] Hagemeyer, Alfred, et al. “Determination of Orientational Order Parameters in Liquid Crystals from Temperature-Dependent 13C NMR Experiments.” Journal of the Chemical Society, Faraday Transactions, vol. 90, no. 22, p. 3433 (1994)
[14] Deng-Le Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 5, John Wiley & Sons (2006)
[15] F.C. Frank, “On the theory of liquid crystal,” Faraday Soc, Volume 25. Number 19 (1958)
[16] 張繼鴻,“發展一可用電壓調控焦距的液晶元件”,私立中原大學應用物理研究所碩士論文,中華民國92年
[17] M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size”, Jpn. J. Appl. Phys, 41. 571-573. (2002)
[18] M. Ye, B. Wang and S. Sato, “Driving of liquid crystal lens without disclination line occurring by applying in-plane electric field,” Jpn. J. Appl. Phys, 42. 5086-5089. (2003)
[19] C. H. Kuo, W. C. Chien, C. T. Hsieh, C. H. Lin, “Influence of pretilt angle on disclination lines of liquid crystal lens,” Appl. Opt, 63 43. 4269-4274. (2012)
[20] C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination line in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express, 19. 14999-15008. (2011)
[21] F.L. Pedrotti, “Introduction to Optics,” 3rd. Edition, Chap. 7, Addison Wesley (2007)
[22] R. J. Collier, C.B. Burckhardt, L.H. Lin, “Optical Holography,” Academic Press New York and London (1971)
[23] H. L. Zhang, H. Deng, W. T. Yu, M. Y. He, D. H. Li, Q. H. Wang, “Tabletop augmented reality 3D display system based on integral imaging,” JOSA. B 34(5) (2017)
[24] Jang, C., Lee, C.-K., Jeong, J., Li, G., Lee, S., Yeom, J., … Lee, B. Recent progress in SEE-through three-dimensional displays using holographic optical elements. Applied Optics, 55(3). (2015)