簡易檢索 / 詳目顯示

研究生: 賴姵含
Lai, Pei-Han
論文名稱: SHINE-like AP2 轉錄因子參與蝴蝶蘭唇瓣發育與角質層形成之研究
Identification of a SHINE-like AP2 domain transcription factor involved in labellum development and cuticle formation in Phalaenopsis orchids
指導教授: 陳虹樺
Chen, Hong-Hwa
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 100
中文關鍵詞: 角質層唇瓣花瓣化唇瓣蝴蝶蘭SHINE轉錄因子
外文關鍵詞: cuticle, lip, petal-like lip, Phalaenopsis, SHINE transcription factors
相關次數: 點閱:106下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蝴蝶蘭因為具有花形優美且花期長的特性,因而成為廣受歡迎的觀賞植物之一。大部分的蘭花花形皆展現出一特化的花瓣,即唇瓣,在生物功能上乃扮演昆蟲降落的平台、或製造營養物質以提供獎賞給授粉者,亦或進行擬態以欺騙授粉者,藉此吸引授粉者前來拜訪進而達到傳宗接代的目的。然而,目前對於參與在蝴蝶蘭唇瓣發育的基因功能鑑定以及花部形態與功能基因表達之關聯仍尚未釐清。由蘭花微矩陣(microarray) 實驗結果中發現一AP2/EREBP轉錄因子在姬蝴蝶蘭唇瓣大量表現,命名為PeEREBP_PHL1。經即時定量RT-PCR的檢測分析證實此基因會在唇瓣、合蕊柱及花梗軸大量表現。此外,經由序列比對以及分析其在AP2/EREBP家族的親緣演化,PeEREBP_PHL1與角質層形成相關的SHINE clade 之同源基因 (At5g25190) 相似,具有保守的AP2 domain 及不完整的SHINE domains (middle motif與C-terminal motif)。利用阿拉伯芥過量表現PeEREBP_PHL1,結果發現在轉殖植株表現出與含有完整SHINE domains的SHINE clade基因高表達之後一樣的表現型,且有角質層摺疊 (cuticular folds) 與臘質沉積在輪狀葉的表面。此外,在蝴蝶蘭對PeEREBP_PHL1進行病毒誘導基因靜默後,不僅造成花部表皮細胞大小的改變,唇瓣表面的cuticular folds與角質層也有減少的現象,顯示PeEREBP_PHL1確實參與調控蝴蝶蘭唇瓣之角質形成。進一步分析目前市面上之大唇蘭花 (具花瓣化唇瓣) ,結果發現PeEREBP_PHL1於花瓣化唇瓣的基因表現不僅明顯下降96%,其表皮細胞形態亦轉形如同花瓣表皮細胞,且在細胞表面不具cuticular folds的形成。綜合以上,本篇論文乃首次證實蝴蝶蘭之SHINE同源基因雖不具完整SHINE domains,但仍具類似於SHINE的功能參與在角質層的形成。本研究結果也提供我們對於蝴蝶蘭唇瓣發育與角質層形成的基因轉錄調節機制有更進一步的了解。

    Phalaenopsis orchid becomes one of the most popular ornamental plants owing to its elegant floral morphology and long florescence duration. Most orchids represent a highly evolved petal, labellum or lip, that offers a landing platform for pollinators or function in mimicry in rewarding or deceptive orchids. However, the key factors for lip development and the relationship between the function of genes and floral morphological structures remain uncertain. Previously, a member of AP2/EREBP family, PeEREBP_PHL1, with enhanced expression in lip in microarray analysis was identified in our laboratory. In this study, the full-length cDNA sequence of PeEREBP_PHL1 was cloned and its phylogenetic relationship was analyzed. PeEREBP_PHL1 gene showed a high expression in lip, column and pedicle, and to a less-level in sepal and petal by using real-time reverse transcription- polymerase chain reaction (RT-PCR). The phylogenetic tree shows that PeEREBP_PHL1 is close to At5g25190, a SHINE clade homolog. The SHINE clade is reported to control cuticle formation, but the At5g25190 lacks intact SHINE domains and lacks SHINE functions. Heterologous overexpression of PeEREBP_PHL1 in Arabidopsis showed phenocopied overexpression of the AtSHNs, showing shiny leaves on the adaxial surface, and not only the cuticular folds but also the wax deposition were observed in the epidermis of rosette leaves. Knockdown expression of PeEREBP_PHL1with virus-induced gene silencing (VIGS) by using Cymbidium mosaic virus (CymMV) vector resulted in morphological alterations in epidermal cells and reductions in cuticular folds in the lip of Phalaenopsis. Furthermore, the plants with petal-like lip, the Big Foot ‘TH.365’, were also examined in this study. The expression of PeEREBP_PHL1was significantly reduced with a 96% reduction in the P. Big Foot ‘TH.365’. In addition, the cell morphology of the P. Big Foot ‘TH.365’ also shows that the lip epidermis is transformed into petal epidermis, which lacks cuticular folds on the surface. Consequently, this study is the first report demonstrating that the PeEREBP_PHL1 lacks entire of the SHINE domains can still exert SHINE functions in Arabidopsis. These results provide new insights into transcriptional mechanisms mediating floral cuticle formation in Phalaenopsis.

    中文摘要 I Abstract III 致謝 V Table of contents VI List of Tables IX List of Figures X List of Appendix Tables XII List of Appendix Figures XIII Abbreviations XIV 1. Introduction 1 1.1 Diversity of flowering plant surface structures 1 1.1.1 Description of micro-morphology of plant surfaces 1 1.1.2 Plant surface structure: epicuticular waxes 2 1.1.3 Plant surface structure: cuticular folds 3 1.2 Biology of the cuticle covering the surface of plant epidermal cells 4 1.2.1 Functions of the plant cuticle 4 1.2.2 Distribution of the plant cuticle 4 1.2.3 Biosynthesis of plant cuticle 5 1.2.4 Regulation of cuticle development 7 1.2.5 Regulation of epidermal surface of flowers 8 1.3 High ornamental value of orchids 9 1.3.1 Current status of Taiwan orchid industry 9 1.3.2 Unique floral morphology of Phalaenopsis orchids 10 1.3.3 Diversity surface micro-morphology of lip in Phalaenopsis orchids 11 1.4 Recent studies of the orchid tepal development 11 1.4.1 The studies of lip identity gene in Phalaenopsis 11 1.4.2 Transcriptomic analysis for floral organ morphogenesis in Phalaenopsis 12 2. Aim of this study 14 3. Materials and Methods 15 3.1 Plant materials and growth conditions 15 3.2 Cloning of full-length PeEREBP_PHLs cDNA from P. equestris 16 3.3 Sequence alignments and construction of phylogenetic trees 17 3.4 Arabidopsis transformation 20 3.5 VIGS experiment in P. OX Red Shoes ‘OX1408’ 21 3.6 Gene expression analysis 22 3.7 Cryo-scanning electron microscopy (SEM) 23 4. Results 25 4.1 Floral micromorphology of Phalaenopsis 25 4.2 Identification of three P. equestris AP2/EREBP family genes 26 4.3 Identification of SHINE-like PeEREBP_PHL1 gene 26 4.4 Spatial and temporal expressions of SHINE-related genes 28 4.5 Overexpression of PeEREBP_PHL1 in Arabidopsis displayed typical shiny phenotype. 29 4.6 Silencing of PeEREBP_PHL1 results in effects on the orchid floral epidermis 30 4.7 Examination of the floral morphology and gene expression in cutivar “Big Foot” 33 5. Discussions 34 5.1 The PeEREBP_PHL1 lack complete SHINE domains still have SHINE functions 34 5.2 PeEREBP_PHL1 is involved not only in cuticle formation but also in trichome development in Arabidopsis 35 5.3 Cuticular folds are essential for attraction pollinators 36 5.4 Grip and slip mechanism inspired the specific lip formation in Phalaenopsis 38 6. Conclusions and Perspectives 40 7. References 41

    Aarts, M. G. M., Keijzer, C. J., Stiekema, W. J., and Pereira, A. (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell. 7: 2115–2127.
    Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G., and Pereira, A. (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell. 16: 2463–2480.
    Allen, M. D., Yamasaki, M., Ohme-Takagi, M., Tateno, M., Suzuki, M. (1998) A novel mode of DNA recognition by a b-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 17:5484–5496.
    Atwood, J. T. (1986) The size of Orchidaceae and the systematic distribution of epiphytic orchids. Selbyana. 9: 171–186.
    Barthlott, W., Ehler, N., 1977. Rasterelektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten. Trop. u. subtrop. Pflanzenwelt, Akad. der Wiss. und Lit. Mainz.
    Barthlott, W., Neinhuis, C., Cutler, D., Ditsch, F., Meusel, I., Theisen, I., Wilhelmi, H. (1998) Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society. 126: 237–260.
    Baumann, K., Perez-Rodriguez, M., Bradley, D., Venail, J., Bailey, P., Jin, H., Koes, R., Roberts, K. and Martin, C. (2007) Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development. 134: 1691–1701.
    Bhushan, B. and Nosonovsky, M. (2010) The rose petal effect and the modes of superhydrophobicity. Philosophical Transactions of the Royal Society A. 368 (1929): 4713–4728.
    Broun, P., Poindexter, P., Osborne, E., Jiang, C. Z., and Riechmann, J. L. (2004). WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc. Natl. Acad. Sci. USA. 101: 4706–4711.
    Chang, Y.Y., Kao, N.H., Li, J.Y., Hsu, W.H., Liang, Y.L., Wu, J.W., Yang, C.H. (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol. 152, 837-853.
    Chen, X., Goodwin, S. M., Boroff, V. L., Liu, X., and Jenks, M. A. (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell. 15: 1170–1185.
    Cominelli, E., Sala, T., Calvi, D., Gusmaroli, G., and Tonelli, C. (2008) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J. 53: 53–64.
    Cozzolino, S. and Widmer, A. (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol. Evol. 20: 487–494.
    Duan, H., and Schuler, M. A. (2005) Differential expression and evolution of the Arabidopsis CYP86A subfamily. Plant Physiol. 137: 1067–1081.
    Feng, L., et al. (2008) Petal effect: A superhydrophobic state with high adhesive force. Langmuir. 24:4114–4119.
    Fiebig, A., Mayfield, J. A., Miley, N. L., Chau, S., Fischer, R. L., and Preuss, D. (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell. 12: 2001–2008.
    Folkers, U., Berger, J., and Hülskamp, M. (1997). Cell morphogenesis of trichomes in Arabidopsis: Differential control of primary and secondary branching by branch initiation regulators and cell growth. Development. 124: 3779–3786.
    Glover, B. J., Perez-Rodriguez, M., and Martin, C. (1998) Development of several epidermal cell types can be specified by the same MYB related plant transcription factor. Development. 125: 3497–3508.
    Griesbach, R. J. (2002) Development of Phalaenopsis orchids for the mass-market. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS, Alexandria, USA.
    Hansen, J. D., Pyee, J., Xia, Y., Wen, T. J., Robertson, D. S., Kolattukudy, P.E., Nikolau, B.J., and Schnable, P.S. (1997). The glossy1 locus of maize and an epidermis-specific cDNA from Kleinia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol. 113: 1091–1100.
    Hsiao, Y.Y., Huang, T.H., Fu, C.H., Huang, S.C., Chen, Y.J., Huang, Y.M. et al. (2013) Transcriptomic analysis of floral organs from Phalaenopsis orchid by using oligonucleotide microarray. Gene. 518: 91–100.
    Hsiao, Y.Y., Pan, Z.J., Hsu, C.C., Yang, Y.P., Hsu, Y.C., Chuang, Y.C., Shih, H.H., Chen, W.H., Tsai, W.C., Chen, H.H. (2011) Research on orchid biology and biotechnology. Plant Cell Physiol. 52, 1467-1486.
    Hsieh, M. H., Pan, Z. J., Lai, P. H., Lu, H. C., Yeh, H. H., Hsu, C. C., Wu, W. L., Wang, S. S., Chen, W. H. and Chen, H. H. (2013) Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in phalaenopsis orchids. Journal of Experimental Botany. (Accepted)
    Huang, N. C., Jane, W. N., Chen, J., Yu, T. S. (2012) Arabidopsis thaliana CENTROR -ADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J. 72, 175–184.
    Iida, K., Seki, M., Sakurai, T., Satou, M., Akiyama, K., Toyada, T., Konagaya, A. and Shinozaki, K. (2005) RARTF: Database and tools for complete sets of Arabidopsis transcription factors. DNA Res. 12: 247–256.
    Jaffé, F. W., Tattersall, A., and Glover, B. J. (2007) A truncated MYB transcription factor from Antirrhinum majus regulates epidermal cell outgrowth. J. Exp. Bot. 58: 1515–1524.
    Jakoby, M.J., Falkenhan, D., Mader, M.T., Brininstool, G., Wischnitzki, E., Platz, N., Hudson, A., Hülskamp, M., Larkin, J., and Schnittger, A. (2008) Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol. 148: 1583–1602.
    Jenks, M. A., Tuttle, H. A., Eigenbrode, S. D., and Feldmann, K. A. (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol. 108: 369–377.
    Kannangara, R., Branigan, C., Liu, Y., Penfield, T., Rao, V., Mouille, G., Hofte, H., Pauly, M., Riechmann, J. L., Broun, P. (2007) The transcription factorWIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell. 19: 1278–1294.
    Kay, Q. O. N., Daoud, H. S. & Stirton, C. H. (1981) Pigment distribution, light reflection and cell structure in petals. Bot. J. Linn. Soc. 83, 57–84.
    Kim, S.Y., Yun, P.Y., Fukuda, T., Ochiai, T., Yokoyama, J., Kameya, T. and Kanno, A. (2007) Expression of a DEFICIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Sci. 172, 319–326.
    Koch, K., Bhushan, B. and Barthlott, W. (2008) Diversity of structure, morphology, and wetting of plant surfaces. Soft Matter. 4, 1943–1963.
    Koch, K., Bhushan, B., Barthlott, W. (2009) Multifunctional surface structures of plants: An inspiration for biomimetics. Progress in Materials Science. 54: 137–178
    Kourounioti, R.L. A., Band, L. R., Fozard, J. A., Hampstead, A., Lovrics, A., Moyroud, E., Vignolini, S., King, J. R., Jensen, O. E. and Glover, B. J. (2013) Buckling as an origin of ordered cuticular patterns in flower petals. J. R. Soc. Interface 10: 20120847.
    Kunst, L., and Samuels, A. L. (2003). Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42: 51–80.
    Li-Beisson, Y., Pollard, M., Sauveplane, V., Pinot, F., Ohlrogge, J., et al. (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci USA.
    Marques, W. L., Salazar, M. M., Camargo., E. L. O., Lepikson-Neto, J., Tiburcio, R. A., et al. (2013) Identification of four Eucalyptus genes potentially involved in cell wall biosynthesis and evolutionarily related to SHINE transcription factors. Plant Growth Regul. 69:203–208.
    Martı´nez-Trujillo, M., Limones-Briones, V., Cabrera-Ponce, J.L., and Herrera-Estrella, L. (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol. Biol. Rep. 22: 63–70.
    Meyers, B.C., Galbraith, D.W., Nelson, T., Agrawal, V. (2004) Methods for transcriptional profiling in plants. Be fruitful and replicate. Plant Physiol. 135, 637-652.
    Millar, A. A., Clemens, S., Zachgo, S., Giblin, E. M., Taylor, D. C., and Kunst, L. (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell. 11: 825–838.
    Mintz-Oron, S., Mandel, T., Rogachev, I., et al. (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiology. 147:823-851.
    Mondragon-Palomino, M. and Theissen, G. (2009) Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann. Bot. 104: 583–594.
    Nawrath, C. (2002). The biopolymers cutin and suberin. In The Arabidopsis Book, C.R. Somerville and E.M. Meyerowitz, eds (Rockville, MD: American Society of Plant Biologists), doi/10.1199/tab.0021, http://www.aspb.org/publications/arabidopsis/.
    Negruk, V., Yang, P., Subramanian, M., McNevin John, P., and Lemieux, B. (1996) Molecular cloning and characterization of the CER2 gene of Arabidopsis thaliana. Plant J. 9: 137–145.
    Noda, K., Glover, B. J., Linstead, P., and Martin, C. (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature. 369: 661–664.
    Oshima, Y., Shikata, M., Koyama, T., Ohtsubo, N., Mitsuda, N. and Ohme-Takagi, M. (2013) MIXTA-like transcription factors and wax inducer1/shine1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. The Plant Cell. tpc.113.110783.
    Park, C. M., Seo, P. J., Lee, S. B., Suh, M. C., Park, M. J., Go, Y. S. (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell. 23: 1138–1152.
    Pollard, M., Beisson, F., Li, Y. H., Ohlrogge, J. B. (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science. 13: 236–246.
    Pruitt, R. E., Vielle-Calzada, J. P., Ploense, S. E., Grossniklaus, U., and Lolle, S. J. (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc. Natl. Acad. Sci. USA. 97: 1311–1316.
    Prüm, B., Bohn, H. F., Seidel, R., Rubach, S. and Speck, T. (2013) Plant surfaces with cuticular folds and their replicas: Influence of microstructuring and surface chemistry on the attachment of a leaf beetle. Acta Biomaterialia. 9: 6360–6368.
    Prüm, B., Seidel, R., Bohn, H. F. and Speck, T. (2012a) Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata). Beilstein J. Nanotechnol. 3:57–64.
    Prüm, B., Seidel, R., Bohn, H. F. and Speck, T. (2012b) Plant surfaces with cuticle folds are slippery for beetles J. R. Soc. Interface. 9:127–35.
    Riederer and Müller (2006) M. Riederer, C. Müller (Eds.), Biology of the plant cuticle. Annual Plant Reviews. 23.
    Robinson, H. and Burns-balogh, P. (1982) Evidence for a primitively epiphytic habit in Orchidaceae. Systematic Botany. 7: 353–358.
    Saitou, N. and Nei, M. (1987) The Neighbor-Joining Method – a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.
    Samuels, L., Kunst, L., and Jetter, R. (2008) Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 59: 683–707.
    Schnurr, J., Shockey, J., and Browse, J. (2004). The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell. 16: 629–642.
    Shi, J. X., Adato, A., Alkan, N., He, Y., Lashbrooke, J., Matas, A. J., Meir, S., Malitsky, S., Isaacson, T., Prusky, D., et al. (2013) The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytologist. 197: 468–480.
    Shi, J. X., Malitsky, S., De Oliveira, S., Branigan, C., Franke, R. B., Schreiber, L. and Aharoni, A. (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet. 7: e1001388.
    Sieber, P., Schorderet, M., Ryser, U., Buchala, A., Kolattukudy, P., Metraux, J. P., and Nawrath, C. (2000) Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell. 12: 721–737.
    St-Pierre, B., Lamflamme, P., Alarco, A. M., and De Luca, V. (1998) The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A–dependent acyl transfer. Plant J. 14: 703–713.
    Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K. et al.(2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proceedings of the National Academy of Sciences, USA. 105: 4062–4067.
    Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol. Biol. Evo. 24: 1596–1599.
    Tanaka, T., Tanaka, H., Machida, C., Watanabe, M., and Machida, Y. (2004) A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J. 37: 139–146.
    Theißen, G., and Saedler, H. (2001) Floral quartets. Nature 409, 469–471.
    Todd, J., Post-Beittenmiller, D., and Jaworski, J. G. (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J. 17: 119–130.
    Tsai, W.C., Chuang, M.H., Kuoh, C.S., Chen, W.H., and Chen, H.H. (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol. 45, 831-844.
    Tsai, W.C., Lee, P.F., Chen, H.I., Hsiao, Y.Y., Wei, W.J., Pan, Z.J., Chuang, M.H., Kuoh, C.S., Chen, W.H. and Chen. H.H. (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 46, 1125-1139.
    Tsai, W.C., Pan, Z.J., Hsiao, Y.Y., Jeng, M.F., Wu, T.F., Chen, W.H. and Chen, H.H. (2008) Interaction of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol. 49, 814–824.
    Tsai, W. C., Fu, C. H., Hsiao, Y. Y., Huang, Y. M., Chen, L. J., Wang, M., et al. (2013) OrchidBase 2.0: comprehensive collection of Orchidaceae floral transcriptomes. Plant Cell Physiol. 54:e7.
    Wellesen, K., Durst, F., Pinot, F., Benveniste, I., Nettesheim, K., Wisman, E., Steiner-Lange, S., Saedler, H., and Yephremov, A. (2001) Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omega-hydroxylation in development. Proc. Natl. Acad. Sci. USA. 98: 9694–9699.
    Whitney, H. M., Bennett, K. M. V., Dorling, M., Sandbach, L., Prince, D., Chittka, L., Glover, B. J. (2011) Why do so many petals have conical epidermal cells? Ann Bot. 108: 609–616.
    Whitney, H., Chittka, L., Bruce, T., Glover, B. J. (2009a). Conical epidermal cells allow bees to grip flowers and increase foraging efficiency. Current Biology. 19: 1–6.
    Whitney, H., Federle, W., Glover, B. J. (2009b) Grip and slip: mechanical interactions between insects and the epidermis of flowers and flower stalks. Communicative and Integrative Biology. 2: 505–508.
    WhitneyHM,et al. (2009c) Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science. 323:130–133.
    Xia, Y., Nikolau, B. J., and Schnable, P. S. (1996) Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. Plant Cell. 8: 1291–1304.
    Xu, X. J., Dietrich, C. R., Delledonne, M., Xia, Y. J., Wen, T. J., Robertson, D. S., Nikolau, B. J., and Schnable, P. S. (1997) Sequence analysis of the cloned glossy8 gene of maize suggests that it may code for a beta-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol. 115: 501–510.
    Xu, Y., Teo, L.L., Zhou, J., Kumar, P.P. and Yu, H. (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J. 46, 54–68.
    Zhang, J. Y., Broeckling, C. D., Blancaflor, E. B., Sledge, M. K., Sumner, L. W., and Wang, Z. Y. (2005). Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42: 689–707.
    Zuckerkandl, E., Pauling, L. (1965) Evolutionary divergence and convergence in proteins. In Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE