| 研究生: |
黃振哲 Huang, Zhen-Zhe |
|---|---|
| 論文名稱: |
偏矽酸鋰催化甘油轉酯化製備碳酸甘油酯之最佳化研究 Study on Optimization of Catalytic Transesterification of Glycerol to Glycerol Carbonate over Lithium Metasilicate |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 偏矽酸鋰 、甘油 、碳酸甘油酯 、轉酯化 、反應曲面法 |
| 外文關鍵詞: | Glycerol, Glycerol carbonate, Lithium metasilicate, Transesterification, Response surface methodology |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自第一次工業革命起,化石燃料成為推動人類文明科技進步及經濟成長最重要的能源之一,隨著化石燃料被大量使用,卻也衍生出許多問題。除了造成環境汙染外,化石燃料屬於非再生能源,過度消耗也將造成資源匱乏,尋找低汙染、具永續性的可再生能源已成了各國重要的課題之一。其中,生質柴油具生物可降解性、低碳排放量、物化性質與傳統柴油類似等性質,因此被當作其替代能源大量生產。隨著生質柴油產業的蓬勃發展,卻也造成主要副產物甘油在市場上供需失衡,導致其價格驟跌並衝擊生質柴油產業發展。尋找甘油高值化之應用以鞏固其價格與生質柴油市場也成了當務之急。碳酸甘油酯具有豐富的官能基團,可望被應用在溶劑、化學中間體、鋰離子電池等產業中,近年來成為甘油高值化中富有發展潛力的化學品之一。
本研究利用水熱合成法來製備偏矽酸鋰做為催化甘油與碳酸二甲酯之轉酯化反應之非均相觸媒, 使用XRD、SEM、BET、FT-IR、ssNMR、TGA等儀器鑑定觸媒之特性,探討其水熱合成之反應溫度及低溫鍛燒之影響,並測試催化活性。並使用反應曲面法中的面中心中央合成設計法(FCCCD)找出碳酸甘油酯最佳化產率及反應條件,並在最佳條件下進行動力學分析及耐用性測試,並與商用觸媒進行比較。
經由實驗結果選擇以水熱合成法在90°C下反應2小時,並在200°C鍛燒6小時後之偏矽酸鋰作為主要觸媒,在觸媒甘油重量比2 wt%下經由實驗設計法可得最佳反應條件為反應溫度87°C、反應時間2小時7分、碳酸二甲酯和甘油莫耳比為2.77,並可得到碳酸甘油酯之產率為95.40%,驗證實驗結果為95.16±0.22%;使用商用偏矽酸鋰所得產率則為92%。反應動力學則藉由Langmuir-Hinshelwood模型推導可得知甘油轉酯化反應為類一階反應,由實驗結果可得到其反應活化能為110.13 kJ/mol。在耐用性測試上,自行合成及商用偏矽酸鋰觸媒在反應至第6次產率仍可達74%及82%,經儀器鑑定結構並無明顯破壞,具良好之耐用性。
The catalytic transesterification of glycerol (G) with dimethyl carbonate (DMC) producing glycerol carbonate (GC) using lithium metasilicate (Li2SiO3) as heterogeneous base catalyst was studied in this work. Li2SiO3 catalyst was prepared by hydrothermal reaction using fumed silica as a starting material with an addition of 2M LiOH(aq) at 90°C for 2 h, followed by calcined at 200°C for 6 h. The catalysts were characterized by XRD, TGA, FTIR, BET, SEM, and ssNMR. Its basicity was also measured. Typically, the transesterification of glycerol with dimethyl carbonate was performed from 60°C to 100°C in a round-bottomed flask equipped with a condenser. Additionally, the design-of-experiment (DOE) principle, response surface methodology (RSM) coupled with face-centered central composite design (FCCCD), was attempted to optimize the transesterification process of glycerol. The yield of glycerol carbonate is the selected response factor. Under the optimized parameters of 87°C reaction temperature, 127 min reaction time and DMC/G molar ratio of 2.77, the yield of GC reached 95.16% with 2 wt% Li2SiO3 catalyst. After reused of lithium metasilicate for 5 cycles, the yield could still reach 74%. Based on the Langmuir-Hinshelwood mechanism, the Li2SiO3-catalyzed transesterification reaction appeared to follow pseudo-first-order kinetics with an activation energy of 110.13 kJ/mol.
Alemi, A., Khademinia, S., & Sertkol, M. (2015). Part III: lithium metasilicate (Li2SiO3)—mild condition hydrothermal synthesis, characterization and optical properties. International Nano Letters, 5(2), 77-83.
Amorim, S. M., Domenico, M. D., Dantas, T. L., José, H. J., & Moreira, R. F. (2016). Lithium orthosilicate for CO2 capture with high regeneration capacity: Kinetic study and modeling of carbonation and decarbonation reactions. Chemical Engineering Journal, 283, 388-396.
Anitha, M., Kamarudin, S., & Kofli, N. (2016). The potential of glycerol as a value-added commodity. Chemical Engineering Journal, 295, 119-130.
Aresta, M., Dibenedetto, A., Nocito, F., & Ferragina, C. (2009). Valorization of bio-glycerol: New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. Journal of catalysis, 268(1), 106-114.
Aresta, M., Dibenedetto, A., Nocito, F., & Pastore, C. (2006). A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. Journal of Molecular Catalysis A: Chemical, 257(1-2), 149-153.
Arora, S., Gosu, V., Kumar, U. A., & Subbaramaiah, V. (2020). A Facile Approach to Develop Rice Husk Derived Green Catalyst for One-pot Synthesis of Glycerol Carbonate from Glycerol. International Journal of Chemical Reactor Engineering, 18(3).
Ayoub, M., & Abdullah, A. Z. (2012). Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable and Sustainable Energy Reviews, 16(5), 2671-2686.
Bagnato, G., Iulianelli, A., Sanna, A., & Basile, A. (2017). Glycerol production and transformation: a critical review with particular emphasis on glycerol reforming reaction for producing hydrogen in conventional and membrane reactors. Membranes, 7(2), 17.
Balat, M., & Balat, H. (2010). Progress in biodiesel processing. Applied energy, 87(6), 1815-1835.
Behr, A., Eilting, J., Irawadi, K., Leschinski, J., & Lindner, F. (2008). Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chemistry, 10(1), 13-30.
Benoit, M., Brissonnet, Y., Guélou, E., De Oliveira Vigier, K., Barrault, J., & Jérôme, F. (2010). Acid‐catalyzed dehydration of fructose and inulin with glycerol or glycerol carbonate as renewably sourced co‐solvent. ChemSusChem, 3(11), 1304-1309.
Bhanage, B. M., Fujita, S.-i., Ikushima, Y., Torii, K., & Arai, M. (2003). Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides and methanol using heterogeneous Mg containing smectite catalysts: effect of reaction variables on activity and selectivity performance. Green Chemistry, 5(1), 71-75.
Bonato, J. A., Headridge, J., & Morrison, R. (1987). Chemistry serves the South Pacific: editorips@ usp. ac. fj.
Boz, N., Degirmenbasi, N., & Kalyon, D. M. (2013). Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds. Applied Catalysis B: Environmental, 138, 236-242.
Cavitch, S. M. (2010). The Soapmaker's Companion: A Comprehensive Guide with Recipes, Techniques & Know-how: Storey Publishing.
Chang, C.-W., Gong, Z.-J., Huang, N.-C., Wang, C.-Y., & Yu, W.-Y. (2020). MgO nanoparticles confined in ZIF-8 as acid-base bifunctional catalysts for enhanced glycerol carbonate production from transesterification of glycerol and dimethyl carbonate. Catalysis today, 351, 21-29.
Chen, K.-T., Wang, J.-X., Dai, Y.-M., Wang, P.-H., Liou, C.-Y., Nien, C.-W., . . . Chen, C.-C. (2013). Rice husk ash as a catalyst precursor for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 44(4), 622-629.
Chernyak, Y. (2006). Dielectric constant, dipole moment, and solubility parameters of some cyclic acid esters. Journal of Chemical & Engineering Data, 51(2), 416-418.
Chung, Y.-H., Rico, D., Martinez, C., Cassidy, T., Noirot, V., Ames, A., & Varga, G. (2007). Effects of feeding dry glycerin to early postpartum Holstein dairy cows on lactational performance and metabolic profiles. Journal of dairy science, 90(12), 5682-5691.
Ciriminna, R., Pina, C. D., Rossi, M., & Pagliaro, M. (2014). Understanding the glycerol market. European Journal of Lipid Science and Technology, 116(10), 1432-1439.
Claude, S., Mouloungui, Z., Yoo, J., & Gaset, A. (1999). Process for the preparation of glycerol carbonate. Patent EP, 955298.
Clements, J. H. (2003). Reactive applications of cyclic alkylene carbonates. Industrial & Engineering Chemistry Research, 42(4), 663-674.
Climent, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., & Concepción, P. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of catalysis, 269(1), 140-149.
Coleman, N. J., Hurt, A. P., & Raza, A. (2015). Hydrothermal synthesis of lithium silicate from waste glass. A preliminary study. Physicochemical Problems of Mineral Processing, 51.
Coskun, O. (2016). Separation techniques: chromatography. Northern clinics of Istanbul, 3(2), 156.
Cruz, D., & Bulbulian, S. (2003). Synthesis of lithium silicate tritium breeder powders by a modified combustion method. Journal of nuclear materials, 312(2-3), 262-265.
Cruz, D., Bulbulian, S., Lima, E., & Pfeiffer, H. (2006). Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3). Journal of Solid State Chemistry, 179(3), 909-916.
Dai, Y.-M., Chen, K.-T., Wang, Y.-J., & Chen, C.-C. (2014). Application of peanut husk ash as a low-cost solid catalyst for biodiesel production. International Journal of Chemical Engineering and Applications, 5(3), 276.
De Caro, P., Bandres, M., Urrutigoïty, M., Cecutti, C., & Thiebaud-Roux, S. (2019). Recent progress in synthesis of glycerol carbonate and evaluation of its plasticizing properties. Frontiers in chemistry, 7, 308.
Dean, A., Voss, D., & Draguljić, D. (1999). Design and analysis of experiments (Vol. 1): Springer.
Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy conversion and management, 50(1), 14-34.
Devi, P., Das, U., & Dalai, A. K. (2018). Production of glycerol carbonate using a novel Ti-SBA-15 catalyst. Chemical Engineering Journal, 346, 477-488.
El Shimi, H. I., Attia, N. K., El Diwani, G. I., & El Sheltawy, S. T. (2016). Investigation of silicates as a catalyst in biodiesel production: A review. International Journal of Energy Research, 40(13), 1743-1756.
Ezhova, N., Korosteleva, I., Kolesnichenko, N., Kuz’min, A., Khadzhiev, S., Vasil’eva, M., & Voronina, Z. (2012). Glycerol carboxylation to glycerol carbonate in the presence of rhodium complexes with phosphine ligands. Petroleum Chemistry, 52(2), 91-96.
Franklin, S. (1948). Carbonate-haloformate of glycerol and method of producing same. In: Google Patents.
Freddi, A., & Salmon, M. (2018). Design Principles and Methodologies.
Fuss, T., Moguš-Milanković, A., Ray, C. S., Lesher, C., Youngman, R., & Day, D. E. (2006). Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure. Journal of Non-Crystalline Solids, 352(38-39), 4101-4111.
García-Sancho, C., Moreno-Tost, R., Mérida-Robles, J. M., Santamaría-González, J., Jiménez-López, A., & Torres, P. M. (2011). Etherification of glycerol to polyglycerols over MgAl mixed oxides. Catalysis today, 167(1), 84-90.
Garlapati, V. K., Shankar, U., & Budhiraja, A. (2016). Bioconversion technologies of crude glycerol to value added industrial products. Biotechnology Reports, 9, 9-14.
Gholami, Z., Abdullah, A. Z., & Lee, K.-T. (2014). Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products. Renewable and Sustainable Energy Reviews, 39, 327-341.
Gregg, F., & Goodwin, C. (2013). SVO: powering your vehicle with straight vegetable oil: New Society Publishers.
Harris, W. S. (1958). Electrochemical studies in cyclic esters (Vol. 8381): University of California, Lawrence Radiation Laboratory.
Hu, J., Li, J., Gu, Y., Guan, Z., Mo, W., Ni, Y., . . . Li, G. (2010). Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl2 (phen)/KI. Applied Catalysis A: General, 386(1-2), 188-193.
Hu, S., Luo, X., Wan, C., & Li, Y. (2012). Characterization of crude glycerol from biodiesel plants. Journal of agricultural and food chemistry, 60(23), 5915-5921.
Ji, Y. (2019). Recent development of heterogeneous catalysis in the transesterification of glycerol to glycerol carbonate. Catalysts, 9(7), 581.
Kamphuis, A. J., Picchioni, F., & Pescarmona, P. P. (2019). CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chemistry, 21(3), 406-448.
Kaur, A., & Ali, A. (2020). Lithium Zirconate as a Selective and Cost-Effective Mixed Metal Oxide Catalyst for Glycerol Carbonate Production. Industrial & Engineering Chemistry Research, 59(7), 2667-2679.
Kaur, A., Prakash, R., & Ali, A. (2018). 1H NMR assisted quantification of glycerol carbonate in the mixture of glycerol and glycerol carbonate. Talanta, 178, 1001-1005.
Kazmi, A. (2011). Advanced oil crop biorefineries: Royal Society of Chemistry.
Kondawar, S. E., Patil, C. R., & Rode, C. V. (2017). Tandem synthesis of glycidol via transesterification of glycerol with DMC over Ba-mixed metal oxide catalysts. ACS Sustainable Chemistry & Engineering, 5(2), 1763-1774.
Kovvali, A. S., & Sirkar, K. K. (2002). Carbon dioxide separation with novel solvents as liquid membranes. Industrial & Engineering Chemistry Research, 41(9), 2287-2295.
Kumar, L. R., Yellapu, S. K., Tyagi, R. D., & Zhang, X. (2019). A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production. Bioresource technology, 293, 122155.
Lameiras, P., Boudesocque, L., Mouloungui, Z., Renault, J.-H., Wieruszeski, J.-M., Lippens, G., & Nuzillard, J.-M. (2011). Glycerol and glycerol carbonate as ultraviscous solvents for mixture analysis by NMR. Journal of Magnetic Resonance, 212(1), 161-168.
Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis today, 41(1-3), 207-219.
Li, J., & Wang, T. (2011). Chemical equilibrium of glycerol carbonate synthesis from glycerol. The Journal of Chemical Thermodynamics, 43(5), 731-736.
Li, T., & Balbuena, P. B. (1999). Theoretical studies of lithium perchlorate in ethylene carbonate, propylene carbonate, and their mixtures. Journal of the Electrochemical society, 146(10), 3613.
Li, Y., Liu, J., & He, D. (2018). Catalytic synthesis of glycerol carbonate from biomass-based glycerol and dimethyl carbonate over Li-La2O3 catalysts. Applied Catalysis A: General, 564, 234-242.
Liu, Z., Wang, J., Kang, M., Yin, N., Wang, X., Tan, Y., & Zhu, Y. (2015). Structure-activity correlations of LiNO3/Mg4AlO5.5 catalysts for glycerol carbonate synthesis from glycerol and dimethyl carbonate. Journal of Industrial and Engineering Chemistry, 21, 394-399.
Magniont, C., Escadeillas, G., Oms-Multon, C., & De Caro, P. (2010). The benefits of incorporating glycerol carbonate into an innovative pozzolanic matrix. Cement and concrete research, 40(7), 1072-1080.
Maugeri, L. (2006). The age of oil: the mythology, history, and future of the world's most controversial resource: Greenwood Publishing Group.
Mizuno, T., Nakai, T., & Mihara, M. (2010). New synthesis of glycerol carbonate from glycerol using sulfur‐assisted carbonylation with carbon monoxide. Heteroatom Chemistry: An International Journal of Main Group Elements, 21(2), 99-102.
Monteiro, M. R., Kugelmeier, C. L., Pinheiro, R. S., Batalha, M. O., & da Silva César, A. (2018). Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, 88, 109-122.
Montgomery, D. C. (2017). Design and analysis of experiments: John wiley & sons.
Mota, C., Pinto, B. P., & De Lima, A. L. (2017). Glycerol: Springer.
Mouloungui, Z., & Pelet, S. (2001). Study of the acyl transfer reaction: Structure and properties of glycerol carbonate esters. European Journal of Lipid Science and Technology, 103(4), 216-222.
Murase, A. (1989). Nail lacquer remover composition. In: Google Patents.
Nomanbhay, S., Hussein, R., & Ong, M. Y. (2018). Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: a review. Green Chemistry Letters and Reviews, 11(2), 135-157.
Ochoa-Gómez, J. R., Gómez-Jiménez-Aberasturi, O., Maestro-Madurga, B., Pesquera-Rodriguez, A., Ramirez-Lopez, C., Lorenzo-Ibarreta, L., . . . Villaran-Velasco, M. C. (2009). Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: catalyst screening and reaction optimization. Applied Catalysis A: General, 366(2), 315-324.
Ochoa-Gómez, J. R., Gómez-Jiménez-Aberasturi, O., Ramírez-López, C., & Belsué, M. (2012). A brief review on industrial alternatives for the manufacturing of glycerol carbonate, a green chemical. Organic Process Research & Development, 16(3), 389-399.
Ortiz-Landeros, J., Gomez-Yanez, C., & Pfeiffer, H. (2011). Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: II—Textural analysis and CO2–H2O sorption evaluation. Journal of Solid State Chemistry, 184(8), 2257-2262.
Ortiz-Landeros, J., López-Juárez, R., Romero-Ibarra, I., Pfeiffer, H., Balmori-Ramírez, H., & Gómez-Yáñez, C. (2016). Li2SiO3 fast microwave-assisted hydrothermal synthesis and evaluation of its water vapor and CO2 absorption properties. Particuology, 24, 129-137.
Pagliaro, M., & Rossi, M. (2010). Glycerol: properties and production. The future of glycerol, 20-21.
Parameswaram, G., Srinivas, M., Babu, B. H., Prasad, P. S., & Lingaiah, N. (2013). Transesterification of glycerol with dimethyl carbonate for the synthesis of glycerol carbonate over Mg/Zr/Sr mixed oxide base catalysts. Catalysis science & technology, 3(12), 3242-3249.
Parry, E. (1963). An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of catalysis, 2(5), 371-379.
Pelet, S., Yoo, J., & Mouloungui, Z. (1999). Analysis of cyclic organic carbonates with chromatographic techniques. Part 1: Ethylene carbonate and glycerol carbonate. HRC. Journal of high resolution chromatography, 22(5), 276-278.
Pinto, A. C., Guarieiro, L. L., Rezende, M. J., Ribeiro, N. M., Torres, E. A., Lopes, W. A., . . . Andrade, J. B. d. (2005). Biodiesel: an overview. Journal of the Brazilian Chemical Society, 16(6B), 1313-1330.
Pradhan, G., & Sharma, Y. C. (2020). Studies on green synthesis of glycerol carbonate from waste cooking oil derived glycerol over an economically viable NiMgOx heterogeneous solid base catalyst. Journal of Cleaner Production, 264, 121258.
Quispe, C. A., Coronado, C. J., & Carvalho Jr, J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475-493.
Rahul, R., Satyarthi, J. K., & Srinivas, D. (2011). Lanthanum and zinc incorporated hydrotalcites as solid base catalysts for biodiesel and biolubricants production.
Rathore, D., Nizami, A.-S., Singh, A., & Pant, D. (2016). Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. Biofuel Research Journal, 3(2), 380-393.
Rokicki, G., Rakoczy, P., Parzuchowski, P., & Sobiecki, M. (2005). Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate. Green Chemistry, 7(7), 529-539.
Rubio-Marcos, F., Calvino-Casilda, V., Bañares, M., & Fernandez, J. (2010). Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. Journal of catalysis, 275(2), 288-293.
Samudrala, S. P. (2019). Glycerol Transformation to Value-Added 1, 3-Propanediol Production: A Paradigm for a Sustainable Biorefinery Process. In Glycerine Production and Transformation-An Innovative Platform for Sustainable Biorefinery and Energy: IntechOpen.
Santos, B. A., Silva, V. M., Loureiro, J. M., & Rodrigues, A. E. (2014). Review for the direct synthesis of dimethyl carbonate. ChemBioEng Reviews, 1(5), 214-229.
Schaffner, B., Schaffner, F., Verevkin, S. P., & Borner, A. (2010). Organic carbonates as solvents in synthesis and catalysis. Chemical reviews, 110(8), 4554-4581.
Schmidt, S., Ritter, B. S., Kratzert, D., Bruchmann, B., & Mülhaupt, R. (2016). Isocyanate-free route to poly (carbohydrate–urethane) thermosets and 100% bio-based coatings derived from glycerol feedstock. Macromolecules, 49(19), 7268-7276.
Serra, J., González, P., Liste, S., Serra, C., Chiussi, S., León, B., . . . Hupa, M. (2003). FTIR and XPS studies of bioactive silica based glasses. Journal of Non-Crystalline Solids, 332(1-3), 20-27.
Sing, K. S., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure appl. chem, 57(4), 603-619.
Singhabhandhu, A., & Tezuka, T. (2010). A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy, 35(6), 2493-2504.
Sonnati, M. O., Amigoni, S., de Givenchy, E. P. T., Darmanin, T., Choulet, O., & Guittard, F. (2013). Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chemistry, 15(2), 283-306.
Su, X., Lin, W., Cheng, H., Zhang, C., Wang, Y., Yu, X., . . . Zhao, F. (2017). Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate. Green Chemistry, 19(7), 1775-1781.
Sun, Y., Song, X., Wang, J., & Yu, J. (2011). Preparation of lithium carbonate hollow spheres by spray pyrolysis. Crystal Research and Technology, 46(2), 173-177.
Sweeley, C., Bentley, R., Makita, M., & Wells, W. (1963). Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. Journal of the American Chemical Society, 85(16), 2497-2507.
Tamalampudi, S., Talukder, M. R., Hama, S., Numata, T., Kondo, A., & Fukuda, H. (2008). Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochemical Engineering Journal, 39(1), 185-189.
Tan, H., Aziz, A. A., & Aroua, M. (2013). Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118-127.
Tang, T., Zhang, Z., Meng, J.-B., & Luo, D.-L. (2009). Synthesis and characterization of lithium silicate powders. Fusion Engineering and Design, 84(12), 2124-2130.
Teles, J., Rieber, N., & Harder, W. (1994). Preparation of glyceryl garbonate. US Patent No US5, 359.
Vadde, K. K., Syrotiuk, V. R., & Montgomery, D. C. (2006). Optimizing protocol interaction using response surface methodology. IEEE Transactions on Mobile Computing, 5(6), 627-639.
Varkolu, M., Burri, D. R., Kamaraju, S. R. R., Jonnalagadda, S. B., & Van Zyl, W. E. (2016). Transesterification of glycerol with dimethyl carbonate over nanocrystalline ordered mesoporous MgO–ZrO2 solid base catalyst. Journal of Porous Materials, 23(1), 185-193.
Vieville, C., Yoo, J., Pelet, S., & Mouloungui, Z. (1998). Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins. Catalysis Letters, 56(4), 245-247.
Wang, J.-X., Chen, K.-T., Wu, J.-S., Wang, P.-H., Huang, S.-T., & Chen, C.-C. (2012). Production of biodiesel through transesterification of soybean oil using lithium orthosilicate solid catalyst. Fuel Processing Technology, 104, 167-173.
Wang, J., Yong, T., Yang, J., Ouyang, C., & Zhang, L. (2015). Organosilicon functionalized glycerol carbonates as electrolytes for lithium-ion batteries. RSC Advances, 5(23), 17660-17666.
Wang, J. X., Chen, K. T., Huang, S. T., & Chen, C. C. (2011). Application of Li2SiO3 as a heterogeneous catalyst in the production of biodiesel from soybean oil. Chinese Chemical Letters, 22(11), 1363-1366.
Wang, S., Hao, P., Li, S., Zhang, A., Guan, Y., & Zhang, L. (2017). Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by calcined silicates. Applied Catalysis A: General, 542, 174-181.
Wang, Y., Liu, C., Sun, J., Yang, R., & Dong, W. (2015). Ordered mesoporous BaCO 3/C-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Science China Chemistry, 58(4), 708-715.
Wu, C. J., & Hamada, M. S. (2011). Experiments: planning, analysis, and optimization (Vol. 552): John Wiley & Sons.
Xie, W., Peng, H., & Chen, L. (2006). Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General, 300(1), 67-74.
Yang, A., Wang, H., Li, W., & Shi, J. (2012). Synthesis of lithium metasilicate powders at low temperature via mechanical milling. Journal of the American Ceramic Society, 95(6), 1818-1821.
Yang, F., Hanna, M. A., & Sun, R. (2012). Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnology for biofuels, 5(1), 1-10.
Zhang, B., Nieuwoudt, M., & Easteal, A. J. (2008). Sol–gel route to nanocrystalline lithium metasilicate particles. Journal of the American Ceramic Society, 91(6), 1927-1932.
Zhang, Q., Yuan, H.-Y., Lin, X.-T., Fukaya, N., Fujitani, T., Sato, K., & Choi, J.-C. (2020). Calcium carbide as a dehydrating agent for the synthesis of carbamates, glycerol carbonate, and cyclic carbonates from carbon dioxide. Green Chemistry, 22(13), 4231-4239.
李輝煌. (2008). 田口方法:品質設計的原理與實務: 高立圖書有限公司.
林岱瑩. (2018). 以發煙二氧化矽製備偏矽酸鋰觸媒於催化廢食用油轉酯化反應之研究. 成功大學化學工程學系學位論文, 1-137.
陳松叢, 趙應偉, 劉建華, & 夏春谷. (2012). 甘油碳酸酯合成方法概述. 分子催化, 26(4), 356-363.
陳瑩蓁. (2017). 偏矽酸鋰觸媒催化大豆油及廢食用油轉酯化反應之研究. 成功大學化學工程學系學位論文, 1-132.
趙毅, 郝榮杰, 沈艷梅, & 方丹. (2010). CO2和丙三醇合成丙三醇碳酸酯的熱力學分析. (PhD).
黎正中, & 陳源樹. (2003). 實驗設計與分析. In: 高立圖書有限公司.
謝志誠. (2007). 生質柴油與石化柴油之比較. 生質柴油之技術與文獻探討.
校內:2026-07-22公開