| 研究生: |
李志宏 Li, Jhih-Hong |
|---|---|
| 論文名稱: |
土壤液化SPT-N值簡易評估法在臺南地區適用性之研究 Suitability Study of Simplified SPT-N Value Evaluation Methods of Soil Liquefaction in Tainan Area |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 2016美濃地震 、標準貫入試驗 、土壤液化 、液化潛勢分析 、液化潛能指數 |
| 外文關鍵詞: | 2016 Meinong Earthquake, SPT, soil liquefaction, liquefaction potential survey, liquefaction potential index |
| 相關次數: | 點閱:255 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究蒐集臺南地區新鑽鑽孔的土層資料,採用HBF法、NCEER法、JRA(2012)法、T&Y法、AIJ法、JRA(1990)法及CBC法七種SPT-N值簡易經驗評估法評估土壤液化潛勢,並以2016美濃地震在臺南地區造成的液化表徵為參考標準,比較各評估方法之間的差異及在臺南地區的適用性、準確性;此外,亦探討JRA(2012)法中有無考量D_50、D_10此兩參數的差異、內陸直下型地震及板塊邊界型地震的參數選擇差異,以及NCEER法中從Seed簡易評估法的手繪圖表公式化而得的計算式,與原本手繪曲線圖的差異、契合性。
分析結果顯示,HBF法、NCEER法、JRA(2012)法及T&Y法較為接近且保守;其中,JRA(2012)法中的中高潛勢孔數高達82.2%;而以誤差平均值而言,T&Y法較接近HBF法。計算其餘6個方法對HBF法的液化潛能指數誤差,以平均值而言,與HBF法最接近的是T&Y法,其次是NCEER法,其餘都與HBF法相差較多,且T&Y法及NJRA法比HBF法還大,其餘皆比較小。就臺南地區來說,考慮D_50及D_10此兩參數的有無,對JRA(2012)法並沒有太大的影響。JRA(2012)法中,內陸直下型地震的評估結果,遠比板塊邊界型地震來的不保守,平均誤差達71%。檢視各方法其(非)液化案例屬高或低潛勢之鑽孔數比例,HBF法及JRA(2012)法在臺南地區的適用性較佳,AIJ法、JRA(1990)法及CBC法則較不適用,但與Iwasaki等人(1984)的經驗值相比,整體結果仍屬不佳。
The objective of this article is to compare the difference among seven simplified SPT-N value evaluation methods of soil liquefaction, and also to assess the suitability of these methods in Tainan area. The following are these seven simplified SPT-N value evaluation methods: HBF (2012), NCEER (2001), AIJ (2001), T&Y (1983), JRA (2012), JRA (1990) and CBC (2010). Besides, in JRA (2012), the difference between whether D_50 and D_10 are considered or not, Type I Earthquake and Type II Earthquake and in NCEER (2001), the difference between formulas and hand-painted diagrams in Seed’s simplified evaluation method will also be presented in this article. There are totally 653 soil profiles have been used in this article to perform studies stated above. To avoid mistaking two JRA methods from different years, JRA (1990) will go by “Iwasaki”, and JRA (2012) will go by “JRA”.
The results implies that values and distribution of liquefaction potential index(P_L) established by Iwasaki (1984) of HBF, NCEER, JRA and T&Y are similar and more conservative. Compared with AIJ, Iwasaki and CBC, the percentage and distribution of high potential borehole of these four methods are much more and more widespread; the highest percentage is JRA, up to 82.2%. When it comes to error HBF-based with other methods, on the part of average, T&Y is the nearest, NCEER is the next, and the other methods differ a lot from HBF. In Tainan area, it seems no significant difference between whether D_50 and D_10 are considered in JRA; also, the result of using Type I Earthquake is much more conservative than Type II Earthquake, and the difference is up to 71% in average. In view of percentage of number of boreholes of high liquefaction risk among liquefied cases or low liquefaction risk among non-liquefied cases, suitability of HBF and JRA are better, while AIJ, Iwasaki and CBC are worse. However, compared with experience from Iwasaki et al. (1984), the entire result of analysis is not very good.
Key words: 2016 Meinong Earthquake, SPT, soil liquefaction, liquefaction potential survey, liquefaction potential index
內政部建築研究所(1999),「地震災害防制宣導手冊之編擬」,八十八年「建築結構與耐震研究」專題研究計畫。
內政部(2001),建築技術規則建築構造編,建築物基礎構造設計規範含解說,第10-1至10-16頁。
日本建築學會(2001),建築基礎構造設計指針。
中央地質調查所(2005),「新竹、苗栗與台南都會區地下地質與工程環境調查研究-臺南都會區」,都會區地下地質與工程環境調查計畫。
中國建築抗震設計規範(GB50011-2010)。
內政部(2011),建築物耐震設計規範及解說,第2-1至2-47頁。
日本道路協會(2012),道路橋示方書‧同解說,V耐震設計篇。
內政部(2018),建築技術規則修正草案。
台南市政府工務局(2018),台南市中級土壤液化潛勢地圖第一期建置暨地質改善委託技術服務現場調查成果報告書。
台南市政府工務局(2018),台南市中級土壤液化潛勢地圖第二期建置委託技術服務第2期工作報告書。
交通部中央氣象局網頁,地震活動彙整。
吳偉特(1979),「台灣地區砂性土壤液化潛能之初步分析」,土木水利,第六卷,第二期,第39至70頁。
吳偉特及楊騰芳(1987),「細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59至74頁。
李咸亨、吳志明、郭政彥(2001),「本土液化評估方法之探討」,八十九學年度集集地震土壤液化總評估研究,2001年土壤液化評估在大地工程上之應用研討會論文集。
林世元(1999),「台南七股地區民國80年發生液化位置之調查分析」,國立成功大學土木工程研究所碩士論文。
林炳森(2000),「九二一集集大地震南投市液化初步調查研究」,國家地震工程研究中心委託計畫,期初報告。
林智偉(2006),「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土木工程研究所碩士論文。
侯勝元(1993),「土壤粒徑分佈及細料稠度對砂土液化強度之影響」,國立成功大學土木工程研究所碩士論文。
陳嘉裕(1999),「細粒料含量對砂土液化潛能之影響研究」,國立成功大學土木工程研究所碩士論文。
陳銘鴻、陳景文、李維峰、王志榮、辜炳寰(2002),「簡易液化評估方法之修正與液化微分區應用」。
郭治平、張睦雄、許榕益、蕭士慧(2003),「Iwasaki 液化潛能指數 PL本土化之探討」,第10屆大地工程研討會論文。
財團法人中興工程科技研究發展基金會譯印(2004),日本公路橋規範及解說,V耐震設計篇。
陳俊吉(2013),「低塑性粉土工程性質之研究」,國立成功大學土木工程研究所博士論文。
陳景文、盧之偉(2017),「從0206美濃地震在台南地區造成之土壤液化災害談起」。
張睦雄、許榕益(2002),「彰化地區土壤液化潛能評估與潛能圖繪製」, 國家地震工程研究中心研究報告。
國家地震工程研究中心(2016),「0206美濃地震震源與強地動分析」。
國家地震工程研究中心(2017),「美濃地震臺南地區土壤液化與地工災害之踏勘調查」。
黃俊鴻、張吉佐、周功台、余明山、簡文郁、楊志文、方仲欣、曾豊升、王金山、李信毅(2002),「由集集地震液化案例探討化評估方法本土適用性之研究」,交通部台灣區國道新建工程局。
游家豪(2007),「低塑性細料對粉質砂土動態性質之影響」,國立成功大學土木工程研究所碩士論文。
黃俊鴻(2012),「本土HBF土壤液化評估法之不確定性」,地工技術雜誌,第133期,第77至86頁。
黃于庭(2018),「臺南地區土壤液化分析評估方法適用性之研究」。
溫子衡(1998),「不同酸鹼性孔隙介質對砂性土壤動力特性影響之研究」,國立海洋大學河海工程學系碩士論文。
褚炳麟、徐松圻、賴聖耀(2000),「九二一大地震霧峰地區土壤液化潛能評估」,國家地震工程研究中心委託計畫。
劉志偉(2011),「建築抗震設計規範—新就規範液化判別方法的比較」,廣東交通職業技術學院學報,第10卷,第2期,第11至13頁。
簡顯光、錢榮芳、張建民(2007),「SPT-N法於中西部平原土壤液化潛能評估之適用性」,第12屆大地工程研討會論文。
饒瑞鈞(2016),「2016年高雄美濃地震-震後科學調查」。
Casagrande, A. (1936). “Notes on the shearing resistance and the stability of cohesionless soils and their relation to the design of earth dams.” Proceedings of the First International Conference on Soil Mechanics and Foundation Engineering, Harvard University, pp. 58-60.
Ishihara, K., and Okada, S. (1978) “Yielding of overconsolidated sand and liquefaction model under cyclic stresses.” Soils and Foundations, Vol. 18, No. 1, pp. 57-72.
Ishihara, K., Sodekawa, M., and Tanaka, Y. (1978). “Effects of overconsolidation on liquefaction characteristics of sands containing fines.” Dynamic Geotechnical Testing, STP 35680S, ASTM, pp. 246-264.
Ishihara, K., and Takatsu, H. (1979). “Effects of overconsolidation and K_0 conditions on the liquefaction.” Soils and Foundations, Vol. 19, No. 4, pp. 59-68.
Ishibashi, I., Sherif, M. A., and Cheng, W. L. (1982). “The effects of soil parameters on pore-pressure-rise and liquefaction prediction.” Soil and Foundations, Vol. 22, No. 1, pp. 39-48.
Iwasaki, T., Arakawa, T., and Tokida, K. (1984). ” Simplified procedure for assessing soil liquefaction during earthquakes.” Soil Dynamics and Earthquake Engineering, Vol. 3, No. 1, pp. 49-58.
Ishihara, K. (1985). “Stability of natural deposits during earthquakes.” Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 321-376.
Iwasaki, T. (1986). “Soil liquefaction studies in Japan: state-of-the-art.” Soil Dynamics and Earthquake Engineering, Vol. 5, Issue 1, pp. 2-68.
Kishida, H. (1969). “Characteristics of liquefied sands during Mino-Owari, Tohnankai and Fukui earthquakes.” Soil and Foundations, Vol. 9, Issue 1, pp. 75-92.
Lee, K. L., and Fitton, J. A. (1969). “Factors affecting the cyclic loading strength of soil.” Vibration Effects of Earthquakes on Soils and Foundations, STP 450, ASTM, pp. 71-96.
Mulilis, J. P. (1975). “The effects of method of sample preparation on the cyclic stress-strain behavior of sands.” Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center.
Seed, H. B., and Lee, K. L. (1966). “Liquefaction of saturated sands during cyclic loading.” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM6, pp. 105-134.
Seed, H. B., and Idriss, I. M. (1971). “Simplified procedure for evaluating soil liquefaction potential.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273.
Seed, H. B., and Peacock, W. H. (1971). “Test procedures for measuring soil liquefaction characteristics.” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1099-1119.
Seed, H. B. (1976). “Evaluation of soil liquefaction effects on level ground during earthquakes.” State of the Art Report, Preprint of ASCE Annual Convention and Exposition on Liquefaction Problems in Geotechnical Engineering.
Sherif, M. A., Tsuchiya, C., and Ishibashi I. (1977). “Saturation effects on initial soil liquefaction.” Journal of the Geotechnical Engineering Division, ASCE, Issue 8, pp. 914-917.
Seed, H. B. (1979). “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes.” Journal of the Geotechnical Engineering Division, Solar Energy Research Institute Published, GT 2, pp. 201-255.
Seed, H. B., Idriss, I. M., and Arango, I. (1983). “Evaluation of liquefaction potential using field performance data.” Journal of Geotechnical Engineering, Vol. 109, Issue 3, pp. 458-482.
Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. (1985). “Influence of SPT procedures in soil liquefaction resistance evaluations.” Journal of Geotechnical Engineering, Vol. 111, Issue 12, pp. 1425-1445.
Seed, R. B., Cetin, K. O., Moss, R. E. S., Kammerer, A. M., Wu, J., Pestana, J. M., Riemer, M. F., Sancio, R. B., Bray, J. D., Kayen, R. E., and Faris A. (2003). “Recent advances in soil liquefaction engineering: A Unified and Consistent Framework.” Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, Long Beach, CA.
Tokimatsu, K., and Yoshimi, Y. (1983). “Empirical correlation of soil liquefaction based on SPT-N value and fines content.” Soils and Foundations, Vol. 23, Issue 4, pp. 56-74.
Xia, H., and Hu, T. (1991). “Effects of saturation and back pressure on sand liquefaction.” Journal of Geotechnical Engineering, Vol. 117, Issue 9, pp. 1347-1362.
Yoshimi, Y., Tanaka, K., and Tokimatsu, K. (1989). “Liquefaction resistance of a partially saturated sand.” Soils and Foundations, Vol. 29, Issue 3, pp. 157-162.
Yoshimi, Y., Tokimatsu, K., and Yoshinori, H. (1989). “Evaluation of liquefaction resistance of clean sands based on high-quality undisturbed samples.” Soils and Foundations, Vol. 29, No. 1, pp. 93-104.
Youd, T. L., and Idriss, I. M. (2001). “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 4, pp. 297-313.