| 研究生: |
魏如暄 Wei, Ju-Hsuan |
|---|---|
| 論文名稱: |
群樁承受軸向載重之非線性行為研究 Nonlinear Behavior of Group Pile in Axial Load |
| 指導教授: |
倪勝火
Ni, Sheng-Huo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 群樁 、軸向載重變形分析 、載重分佈 、t-z曲線 |
| 外文關鍵詞: | pile groups, vertical deformation, load distribution, t-z curve |
| 相關次數: | 點閱:125 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究為探討群樁承受軸向力之載重變形行為,求出案例之載重與變形理論值,其結果與案例測量值比對,並以合理假設做修正◦文中介紹Randolph基樁軸向載重之變形分析及群樁軸向載重變形分析,並利用以此理論為基礎發展之PileGPw軟體做計算,求取群樁中各單樁之樁頭、樁身及樁底載重◦已知樁身總載重,可假設各種樁身剪力分佈,由此計算樁身載重分佈,與案例測量值比對,並利用單樁極限承載力及群樁效應修正◦
研究結果顯示,將樁上半部剪力假設隨身度呈線性增加,下半部皆為定值,理論值與實際值相當吻合◦理論分析時,假設樁帽為剛性,依照每根樁的位置不同,所承受之載重亦不同;角落樁承受之載重會大於群樁載重除以樁數之平均值,而邊緣樁及中央樁皆小於平均值,但邊緣樁最接近平均值◦實際情況,樁帽並非完全剛性,案例中群樁之測量值與理論值在低載重時很接近;但在高載重時,測量值與理論值差距變大,特別是在中央樁的部分◦利用單樁極限承載力及群樁效應修正得到之結果與測量值十分近似◦
SUMMARY
This paper described Randolph and Wroth (1978, 1979) article about deformation of vertically loaded piles. The results showed that the pile will carry upper half of the shear force increases linearly with depth, the lower half are constant. The theoretical value and the measured value is quite consistent. For rigid pile caps, the load of corner pile will be greater than the average value of total load divided by the number of piles. Central pile and edge piles are less than the average value. The edge piles are the closest to the actual situation in the pile cap. In actual situation, the measured value and the theoretical value of the group is well agreement on the pile at low loading condition. However, at high loading condition, there is a gap between the measured values and the theoretical value. The results of theoretical and the measured values will be very similar after the value corrected with ultimate bearing capacity and pile groups effect.
Key Words: pile groups, vertical deformation, load distribution, t-z curve
1. 楊近永,群樁承受軸向載重之線彈塑性行為之研究,成大土木研究所 80級,碩士論文(1991)。
2. 蔡明輝,理論t-z曲線對樁基沉陷分析之研究,成大土木研究所 78級,碩士論文(1989)。
3. Armaleh, S. and Desai, C.S., “Load-Deformation Response of Axially Loaded Piles,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 113, No. 12, pp. 1483-1500 (1987).
4. Baguelin, F., Bustamante, M., Frank, R., and Jezequel, J.F., “La capacite portante des pieux,” Annales de l’Institut Technique du Batiment et des Travaux Publics, Suppl. 300, Serie SF/116, pp. 1-22 (1970).
5. Banerjee, P.K., “A Contribution to the Study of Axially Loaded Pile Foundations,” Thesis presented to Southampton University at Southampton, England, in fulfillment of the requirements for the degree of Doctor of Philosophy (1970).
6. Banerjee, P.K. and Butterfield, R., Boundary Element Methods in Geotechanics, Gudehus, G. (Ed.), John Wiley & Sons, New York, pp. 529-570 (1977).
7. Brebbia, C.A., The Boundary Element Method for Engineering. Pentech Press, London (1978).
8. Cooke, R.W., “The Settlement of Friction Pile Foundations,” Proceedings of Conference on Tall Buildings, Kuala Lumpur (1974).
9. Coyle, H. M., and Reese, L.C., “Load Transfer for Axially-Loaded Piles in clay,” Journal of the Soil Mechanics and Foundations Division. ASCE, Vol. 92, No. SM2, pp. 1-26 (1966).
10. Coyle, H.M., and Reese, L.C.,“ Load Transfer for Axially-Loaded Piles in clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. 2, pp. 1-26 (1967).
11. Coyle, H.M., and Sulaiman, I.H.,“ Skin Friction for Steel Piles in Sand,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. 6, pp. 261-278 (1967).
12. Desai, C.S. and Christian, J. T., Numerical Methods in Geotechnical Engineering, McGraw-Hill Int. Book Co. New York (1979).
13. Frank, R., “Etude theorique du comportement des pieux sous charge verticale, ” introduction de la dilatance. Dr-Eng. Thesis, University Paris VI (Pierre et Marie Curie University)(1974).
14. Frank, R., “Etude theorique du comportement des pieux sous charge verticale,” Rapport de recherche no 46, Laboratoire Central des Ponts et Chaussees, Paris, France (1975).
15. Gibson, R.E., “Some Results Concerning Displacement and Stresses in a Non-Homogeneous Elastic Half-Space,” Geotechnique, Vol. 17, No. 1, pp. 58-67 (1967).
16. Gibson, R.E., “The Analytical Method in Soil Mechanics,” Geotechnique, Vol. 24, No. 2, pp. 115-140 (1974).
17. Jaswon, M.A. and Symn, G.T., Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London (1977).
18. Kraft, L.M. Jr., Ray, R.P., and Kagawa, T.,“ Theoretical t-z Curves,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. 11, pp. 1543-1561 (1981).
19. Kiousis, P.D. and Elansary, A.S., “Load Settlement Relation for Axially Loaded Piles,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 113, No. 6, pp. 655-661 (1987).
20. Kulhawy, F.H. and Mayne, P.W., Manual on Estimating Soil Properties for Foundation Design, Electric Power Research Institute, Palo Alto, California, pp. 4-15 (1990).
21. Mahar, L.J., and O’Neill, M.W., “Geotechnical Characterization of Desiccated Clay,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 109, No. GT1, pp. 57-71 (1983).
22. Melan, E., “Der Spannungszustand der durch eine Einzelkraft im Innern beanspruchten Halbscheibe,” Zeitschrift für Angewandte Mathematik und Mechanik, Volume 12, Issue 6, pp. 343–346 (1932).
23. Mindlin, R.D., “Force at a Point in the Interior of a Semi-Infinite Solid,” Physics, Vol. 7, No. 5, pp. 195-202 (1936).
24. Nogami, T. and Chen, H.L., “Simplified Approach for Axial Pile Group Response Analysis,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 110, No. GT9, pp. 1257-1273 (1984).
25. Nogami, T., “Dynamic Group Effect in Axial Response of Group Piles,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 109, No. GT2, pp. 228-243 (1983).
26. Nogami, T., “Dynamic Stiffness and Damping of Pile Groups in Inhomogeneous Soil,” ASCE Special Technical Publication on Dynamic Response of Pile Foundations, Analytical Aspect, ASCE, pp. 31-52 (1980).
27. O’Neil, M.W., Hawkins, R.A., and Audibert, J.M.E., “Installation of Pile Group in Overconsolidated Clay,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 108, No. 11, pp. 1369-1386 (1982).
28. Ottaviani, M., “Three Dimensional Finite Element Analysis of Vertically Loaded Pile Groups,” Geotechnique, London, England, Vol. 25, No. 10, pp. 238-241 (1975).
29. Poulos, H.G., “Analysis of the Setlement of Pile Groups,” Geotechnique, Vol. 18, No. 4, pp. 449-471 (1968).
30. Poulos, H.G., and Davis, E.H., “The Settlement Behaviour of Single, Axially Loaded, Incompressible Piles and Piers,” Geotechnique, Vol. 18, No. 3, pp. 351-371 (1968).
31. Randolph, M. F., “A Theoretical Study of the Performance of Piles,” Thesis presented to Cambridge University, at Cambridge, England, in fulfillment of the requirements for the degree of Doctor of Philosophy (1977).
32. Randolph, M.F. and Wroth, C.P., “Analysis of Deformation of Vertically Loaded Piles,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. GT12, pp. 1465-1488 (1978).
33. Randolph, M.F. and Wroth, C.P., “An Analysis of the Vertical Deformation of Pile Groups,” Geotechnique, Vol. 29, No. 4, pp. 423-439 (1979).
34. Seed, H.B. and Reese, L.C., “The Action of Soft Clay Along Friction Piles,” Transaction, ASCE, Vol. 122, No. 2882, pp. 731-754 (1957).
35. Telles, J.C.F. and Brebbia, C.A., “Boundary Element Solution for Half-Plane Problems,” International Journal of Solids and Structures, Vol. 17, No. 12, pp. 1149-1158 (1981).
36. Timoshenko, S.P. and Goodier, J.N., Theory of elasticity, New York : McGraw-Hill, 3rd edition (1970).
37. Tomlinson, M.J., Adhesion of piles in stiff clays, Construction Industry Research and Information Association in London (1970).