簡易檢索 / 詳目顯示

研究生: 林彥旭
Lin, Yen-Hsu
論文名稱: 建立以大氣溫度預測室內溫度變化之統計模式
Predictive model of indoor temperature from ambient levels
指導教授: 蘇慧貞
Su, Huey-Jen
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 全球暖化溫度室內環境建築物預測模式
外文關鍵詞: global warming, temperature, indoor environment, building, predictive model
相關次數: 點閱:85下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代人每天約有90%的時間待在不同之室內空間,顯示室內溫度才是較有可能影響居住人群的健康;因此,為能更精確且快速地的定義出區域民眾實際之溫度暴露範圍,本研究將透過代表性建築物之實場量測評估,建立一以室外之大氣測站溫度來預測室內溫度之統計預測模式,並考量各種建築物特性、氣候資料及室內人員的調適行為,如能源的消耗使用(冷暖氣機調節室內溫度)等影響室內溫度之因素。
    本研究選取占國人室內居處比例最高 (73%) 的建築類別-住宅,在全臺11個縣市包含臺南、嘉義、臺中、新竹、臺北、基隆、宜蘭、花蓮、臺東、恆春及高雄共30個室內空間中設置長期連續性之溫溼度監測系統,記錄每小時溫度變化,同步搜集建築物特性、室內人員活動情形(包含電力指標)以及室外大氣監測資料。最後利用混合效應模型 (Mixed effect model) 進行各項指標因素在模式中影響係數的推估,並以實場量測值做模式的反覆驗證。
    研究住宅之平均屋齡為22.3年,67%屬於5層樓以下,平均地坪為36.6坪。2012年9月至2013年7月的監測結果顯示,室內外的平均溫度分別為25.2°C (範圍14.0-35.0°C)與23.4°C (範圍8.0-36.3°C),兩者相關性0.84 (p for Spearman rank correlation < 0.001),隨月份 (0.4-0.68) 或城市 (0.55-0.87) 不同有極大變異。進一步探討其他影響室內溫度之因子,顯示大氣測站資料包括溫度、濕度、氣壓、風速、日照時數及風向皆顯著影響。另也發現四個小時前的室外溫度對於室內溫度之影響性大於當下室外溫度。建築物特性的部分,包含調查空間的窗戶數及樓層皆有顯著之影響。能源消耗指標(電力)及受試者使用行為部分,推測受限於調查月份及樣本數不足等因素,未能發現與室內溫度的變化有關係。本研究以上述篩選出的顯著影響因子作為模型建立之優先考量,並固定納入「調查月份」、「城市」及「室外溫度×月份」等變項。以全臺灣為例,四小時前的室外溫度可解釋36.2% (R2) 室內溫度的變動情形,進一步加入了建築物特性等變項,則發現每增加一扇窗,室內溫度會增加0.22°C (R2 = 36.8%)。為使模型的預測能力及其應用更加完整,我們進一步依緯度分別建立北、中及南部地區之模型,以解決地理區域有關之氣候條件上的差異;北區模型(新竹、臺北、基隆及宜蘭)之結果顯示,研究空間每增加一個樓層,室內溫度會增加0.30°C;中區部分(嘉義、臺中及花蓮)及南區部分(台南、高雄、恆春及臺東)並未發現建築物特性與室內溫度變化有關係。整體來看,北區模型擁有最高之解釋力 (R2 = 44%),其次則為中區 (36.4%) 及南區 (33.8%) 模型。研究最後進行交叉驗證 (cross-validation) 以確認模型的預測能力,分別就在全臺灣、北部、中部及南部地區所建立之四個模式計算其預測與實際值間的相關性,為0.73、0.88、0.75及0.70,平均值的差距分別為-1.85、-1.14、-1.53及-2.15°C;研究發現,在5至7月及9至11月間,模式的預測能力是較差的,推測可能與室內人員之使用行為有關,像是冷氣空調的使用增加了室內外的溫差。
    在臺灣地區,室外溫度對室內溫度之影響有明顯之延遲效應,且其相關性會受到建材蓄熱性及室內人員使用行為的影響。本研究之模型預測能力最高能解釋44%的室內溫度變化,因地區的不同其預測能力範圍介於約35-45%,且在12至4月間會有較準確的推估。此模式的建立將可提供流行病學研究更精準地估算區域的溫度暴露指標,對於釐清氣候變遷導致臺灣民眾的健康風險等評估研究將能有較確實的結果與討論;此外亦可進一步作為災變預警系統建置之重要基礎,透過室內溫度值的預測,預防長期居處室內之易感性族群因溫度瞬變而導致健康風險。

    As people spend most of their time in different buildings, indoor temperature is thought to be better associated with human health performance compared to ambient levels. Current study is aimed to establish the statistical model to predict indoor temperature based on outdoor information from atmospheric monitoring stations. Several factors including building characteristics, outdoor climate data and adaptive behavior of occupants, such as energy consumption through using air conditioner, are further evaluated.
    Thirty homes, where people spend about 73% of their daily time, were selected from 11 cities in Taiwan. Real-time monitors for temperature were set inside the rooms where occupants spent most of their time when inside the house. Building characteristics, human activities and electricity consumption data were recorded weekly, and corresponding outdoor climate data from local station was collected accordingly. Mixed effect model has been conducted for model establishment after adjusting for above-mentioned determinants. The model is further cross-validated afterwards.
    Study buildings are with average age and area of 22.3 years and 121 m2, respectively, and 67% of them are below five-floor-high. During the period of investigation from September 2012 to July 2013, average indoor temperature was 25.2°C (range from 14.0 to 35.0°C) while outdoors was 23.4°C (range from 8.0 to 36.3°C). Correlation coefficient between hourly indoor and outdoor temperatures is 0.84 (p< 0.001) and varies by month (range from 0.4 to 0.68) and city (range from 0.55 to 0.87). Four-hour lag of outdoor temperature is found to be with the best estimation compared to the in-time and other lag ones. Information collected from ambient station including temperature, relative humidity, atmospheric pressure, wind speed, sunshine hours and wind direction are significant predictors associated with the variation of indoor temperature. Building characteristics including number of windows and floors were related to the outcome of interest as well. Factors such as energy consumption of electricity and behavior records of occupants were yet to result in the significant effects on the change of indoor temperature which might due to the short study period and limit sample size. Above-mentioned variables with significant effects were prioritized to consider in the establishment of model fixed with the variables of "month of investigation", "city" and interaction term of "outdoor temperature × month of investigation". As to the model for whole Taiwan, the 4-hour-lag outdoor temperature explains 36.2% (R2) of the variance for the in-time indoor temperature. When taking building characteristics into account, it’s found that every increase of number of window is associated with an increase of 0.22°C for indoor temperature (R2 = 36.8%). In order to enhance the predictive ability and availability of the model, we further separated the dataset into northern, central and southern region defined by latitudes which reflected geographical climatic differences. Results of the northern model (Hsinchu, Taipei, Keelung and Yilan) show that every increment of one floor number is associated with an increase of 0.30°C for indoor temperature. As to the model for central region (Chiayi, Taichung, and Hualien) and southern region (Tainan, Kaohsiung, Hengchuen/Pingtung and Taitung) were yet to result in the significant effects on the change of indoor temperature. Overall, the model established in northern Taiwan shown with the highest ability to explain the variation of indoor temperature (R2=44%), followed by models in central (R2=36.4%) and south area (R2=33.8%). Cross-validation is conducted afterward to confirm the predictive ability of models. Correlations between predicted and observed values of whole island, and northern, central and southern area are 0.73, 0.88, 0.75 and 0.70, respectively, while average difference are -1.85,-1.14,-1.53 and -2.15°C, respectively. Lower predictive ability during May to July and September to November might be related to frequently adaptive behavior of occupants, such as using air conditioner, which resulted into higher level of difference between indoor and outdoor temperature.
    In Taiwan, the effect of outdoor temperature on the indoors seems to present apparent delay, and their associations are affected by the heat retention of building materials as well as occupants’ adaptive behaviors. In this study, at most, a total of 44% of the variance of indoor temperature can be explained by our model, depending on the region of interest, and the prediction will be more accurate during the period of December to April. The model can be used as a means of mapping city- or country-wide indoor temperatures under various scenarios of outdoor environments, to provide a better representation of individuals’ exposure levels in ecological studies examining the diversity of regional impaction between global warming and health effects. Furthermore, the model will be considered as the critical basis for the early warning system, through the prediction of indoor temperature in advance, to prevent potential health risk of susceptible group due to the sudden changes of the temperature.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 研究背景 1 1-2 研究問題 3 1-3 研究目的 3 1-4 研究之重要性 4 第二章 文獻回顧 5 2-1 氣候變遷 5 2-2 氣候變遷引起之溫度變化與健康效應之危害 6 2-2-1 溫度變化對生理的影響 6 2-2-2 極端氣候事件 6 2-2-3 高溫與相關健康疾病之研究 7 2-2-4 低溫與相關健康疾病之研究 8 2-3 氣候變遷對室內的影響 9 2-3-1 耐候化(weatherization) 11 2-4 溫度暴露指標的代表性 13 2-5 代表性暴露指標之建置 19 第三章 研究材料與方法 21 3-1研究架構 21 3-2 建築物之選取 23 3-2-1 代表性建築物 23 3-2-2 研究區域選取 23 3-3 研究對象之選取 25 3-4 研究資料 25 3-4-1 室內環境溫度資料 26 3-4-2 氣候條件資料 27 3-4-3 建築物特性資料 28 3-4-4 電力資料及每週電器使用行為資料 28 3-5 統計方法 29 第四章 研究結果 31 4-1 研究資料之描述性統計 31 4-1-1 受測建築物之代表性 31 4-1-2 室內外氣象條件因子描述 35 4-1-3 電力消耗指標 42 4-1-4 室內人員行為調查資料 43 4-2 室外溫度對室內溫度之影響 44 4-2-1 室內/外溫度之相關性 44 4-2-2 室外溫度對室內溫度影響之延遲效應 45 4-3 影響室內外相關性之因子(自變項)篩選 47 4-3-1 氣候條件 47 4-3-2 建築物特性 48 4-3-3 電力消耗指標 48 4-3-4 室內人員使用行為 48 4-4 預測模型之建置 50 4-4-1 全部地區之模型 50 4-4-2 北部地區之模型 56 4-4-3 中部地區之模型 60 4-4-4 南部地區之模型 64 4-4-5 各區預測模型之小結 68 4-5 預測模型之驗證 69 4-5-1 全部地區之模型驗證 69 4-5-2 北部地區之模型驗證 70 4-5-3 中部地區之模型驗證 71 4-5-4 南部地區之模型驗證 72 第五章 討論 73 5-1 室內/外溫度之相關性 73 5-2 室外溫度對室內溫度影響之延遲效應 74 5-3 各區模型之預測能力 75 5-4 研究限制 80 第六章 結論與未來工作 81 6-1 結論 81 6-2 未來工作 82 參考文獻 83

    Alberdi JC, Diaz J, Montero JC, Miron I. 1998. Daily mortality in Madrid community 1986-1992: Relationship with meteorological variables. European Journal of Epidemiology 14: 571-8.
    Basu R. 2009. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ Health 8: 40.
    Bernstein JA, Alexis N, Bacchus H, Bernstein IL, Fritz P, Horner E, et al. 2008. The health effects of nonindustrial indoor air pollution. Journal of Allergy and Clinical Immunology 121: 585-91.
    Blum LN, Bresolin LB, Williams MA. 1998. From the AMA Council on Scientific Affairs. Heat-related illness during extreme weather emergencies. JAMA 279: 1514.
    Bornehag CG, Sundell J, Hagerhed-Engman L, Sigsgaard T. 2005. Association between ventilation rates in 390 Swedish homes and allergic symptoms in children. Indoor Air 15: 275-80.
    Braga AL, Zanobetti A, Schwartz J. 2002. The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environ Health Perspect 110: 859-63.
    CDC. 2003. Centers for Disease Control and Prevention. Hypothermia-related deaths--Philadelphia, 2001, and United States, 1999. MMWR 52: 86-7.
    Confalonieri U, Menne B, Akhtar R, Ebi K, Hauengue M, Kovats R, et al. 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. UK: Cambridge University Press, Cambridge
    Diaz J, Garcia R, Velazquez de Castro F, Hernandez E, Lopez C, Otero A. 2002. Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997. Int J Biometeorol 46: 145-9.
    Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO. 2000. Climate extremes: Observations, modeling, and impacts. Science 289: 2068-74.
    Elias-Ozkan. ST, Summers. F, Surmeli. N, Yannas. S. 2006. A Comparative Study of the Thermal Performance of Building Materials. The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6-8 September 2006.
    Emenius G, Svartengren M, Korsgaard J, Nordvall L, Pershagen G, Wickman M. 2004. Building characteristics, indoor air quality and recurrent wheezing in very young children (BAMSE). Indoor Air 14: 34-42.
    Erdmann CA, Apte MG. 2004. Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset. Indoor Air 14: 127-34.
    Green RS, Basu R, Malig B, Broadwin R, Kim JJ, Ostro B. 2010. The effect of temperature on hospital admissions in nine California counties. International Journal of Public Health 55: 113-21.
    Hajat S, Bird W, Haines A. 2004. Cold weather and GP consultations for respiratory conditions by elderly people in 16 locations in the UK. European Journal of Epidemiology 19: 959-68.
    Hoffmann B, Hertel S, Boes T, Weiland D, Jockel KH. 2008. Increased cause-specific mortality associated with 2003 heat wave in Essen, Germany. J Toxicol Environ Health A 71: 759-65.
    Huynen MM, Martens P, Schram D, Weijenberg MP, Kunst AE. 2001. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect 109: 463-70.
    Hyland A, Travers M, Dresler C, Higbee C, Cummings K. 2008. A 32-county comparison of tobacco smoke derived particle levels in indoor public places. Tobacco Control 17: 159-65.
    Keatinge WR, Donaldson GC. 1995. Cardiovascular mortality in winter. Arctic Med Res 54 Suppl 2: 16-8.
    Kestens Y, Brand A, Fournier M, Goudreau S, Kosatsky T, Maloley M, et al. 2011. Modelling the variation of land surface temperature as determinant of risk of heat-related health events. International Journal of Health Geographics 10.
    Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology 11: 231-52.
    Koppe C, Kovats RS, Jendritzky G, Menne B. 2004. Heat-waves: impacts and responses. In: Health and Global Environmental Change Series, no. 2 WHO Regional Office for Europe (ed.), Copenhagen.
    Kovats RS, Hajat S, Wilkinson P. 2004. Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK. Occupational and Environmental Medicine 61: 893-8.
    Kunst AE, Looman CWN, Mackenbach JP. 1993. Outdoor Air-Temperature and Mortality in the Netherlands - a Time-Series Analysis. Am J Epidemiol 137: 331-41.
    Lee CW, Hsu DJ. 2007. Measurements of fine and ultrafine particles formation in photocopy centers in Taiwan. Atmospheric Environment 41: 6598-609.
    Lim S, Lee K, Seo S, Jang S. 2011. Impact of regulation on indoor volatile organic compounds in new unoccupied apartment in Korea. Atmospheric Environment 45: 1994-2000.
    Lin S, Luo M, Walker RJ, Liu X, Hwang SA, Chinery R. 2009. Extreme High Temperatures and Hospital Admissions for Respiratory and Cardiovascular Diseases. Epidemiology 20: 738-46.
    Liu SC, Fu CB, Shiu CJ, Chen JP, Wu FT. 2009. Temperature dependence of global precipitation extremes. Geophysical Research Letters 36.
    Ma W, Yang C, Chu C, Li T, Tan J, Kan H. 2012. The impact of the 2008 cold spell on mortality in Shanghai, China. Int J Biometeorol.
    Mavrogianni A, Wilkinson P, Davies M, Biddulph P, Oikonomou E. 2012. Building characteristics as determinants of propensity to high indoor summer temperatures in London dwellings. Building and Environment 55: 117-30.
    Menzies D, Popa J, Hanley JA, Rand T, Milton DK. 2003. Effect of ultraviolet germicidal lights installed in office ventilation systems on workers' health and wellbeing: double-blind multiple crossover trial. Lancet 362: 1785-91.
    Michelozzi P, Accetta G, De Sario M, D'Ippoliti D, Marino C, Baccini M, et al. 2009. High temperature and hospitalizations for cardiovascular and respiratory causes in 12 European cities. Am J Respir Crit Care Med 179: 383-9.
    Morey P, Rand T, Phoenix T. 2009. On the penetration of mold into the fiberboard used in HVAC ductwork. Healthy Buildings, page 4. Syracuse, NY.
    Myatt TA, Johnston SL, Zuo ZF, Wand M, Kebadze T, Rudnick S, et al. 2004. Detection of airborne rhinovirus and its relation to outdoor air supply in office environments. Am J Respir Crit Care Med 169: 1187-90.
    Nazaroff WW. 2004. Indoor particle dynamics. Indoor Air 14: 175-83.
    Norback D. 1995. Subjective indoor air quality in schools - The influence of high room temperature, carpeting, fleecy wall materials and volatile organic compounds (VOC). Indoor Air-International Journal of Indoor Air Quality and Climate 5: 237-46.
    Offermann FJ. 2010. IAQ in Airtight Homes. Ashrae Journal 52: 58-60.
    Oie L, Nafstad P, Botten G, Magnus P, Jaakkola JJK. 1999. Ventilation in homes and bronchial obstruction in young children. Epidemiology 10: 294-9.
    Ren H, Wang X, Zhao J, Ke H, X. L. 2010. Investigation of indoor formaldehyde in residential apartments in Beijing. 2010 4th International Conference on Bioinformatics and Biomedical Engineering.
    Revich B, Shaposhnikov D. 2008. Temperature-induced excess mortality in Moscow, Russia. Int J Biometeorol 52: 367-74.
    Roosens L, Abdallah MAE, Harrad S, Neels H, Covaci A. 2009. Exposure to Hexabromocyclododecanes (HBCDs) via Dust Ingestion, but Not Diet, Correlates with Concentrations in Human Serum: Preliminary Results. Environ Health Perspect 117: 1707-12.
    Samet J. 1990. Environmental Controls and Lung-Disease - Report of the Ats Workshop on Environmental Controls and Lung-Disease, Santa-Fe, New-Mexico, March 24-26, 1988. American Review of Respiratory Disease 142: 915-39.
    Schwartz J, Samet JM, Patz JA. 2004. Hospital admissions for heart disease: the effects of temperature and humidity. Epidemiology 15: 755-61.
    Semenza JC, McCullough JE, Flanders WD, McGeehin MA, Lumpkin JR. 1999. Excess hospital admissions during the July 1995 heat wave in Chicago. Am J Prev Med 16: 269-77.
    Shaughnessy RJ, Haverinen-Shaughnessy U, Nevalainen A, Moschandreas D. 2006. A preliminary study on the association between ventilation rates in classrooms and student performance. Indoor Air 16: 465-8.
    Shendell DG, Prill R, Fisk WJ, Apte MG, Blake D, Faulkner D. 2004. Associations between classroom CO2 concentrations and student attendance in Washington and Idaho. Indoor Air 14: 333-41.
    Smargiassi A, Fournier M, Griot C, Baudouin Y, Kosatsky T. 2008. Prediction of the indoor temperatures of an urban area with an in-time regression mapping approach. Journal of Exposure Science and Environmental Epidemiology 18: 282-8.
    Smedje G, Norback D. 2000. New ventilation systems at select schools in Sweden - Effects on asthma and exposure. Archives of Environmental Health 55: 18-25.
    Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al. 2007. IPCC fourth assessment report (AR4). Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change.
    The National Academies Press. 2011. Climate Change, the Indoor Environment, and Health.
    Torres-Dosal A, Perez-Maldonado IN, Jasso-Pineda Y, Salinas RIM, Alegria-Torres JA, Diaz-Barriga F. 2008. Indoor air pollution in a Mexican indigenous community: Evaluation of risk reduction program using biomarkers, of exposure and effect. Science of the Total Environment 390: 362-8.
    Trenberth K, Jones P, Ambenje P, Bojariu R, Easterling D, Tank A. 2007. Climate Change 2007: Surface and Atmospheric in Climate Change.
    Wargocki P, Wyon D. 2007. The effect of moderately raised classroom temperatures and classroom ventilation rate on the performance of schoolwork by children. HVAC&R Research 13: 193-220.
    Wargocki P, Wyon DP, Fanger PO. 2004. The performance and subjective responses of call-center operators with new and used supply air filters at two outdoor air supply rates. Indoor Air 14: 7-16.
    White-Newsome JL, Sanchez BN, Jolliet O, Zhang ZZ, Parker EA, Dvonch JT, et al. 2012. Climate change and health: Indoor heat exposure in vulnerable populations. Environ Res 112: 20-7.
    Wright A, Young A, Natarajan S. 2005. Dwelling temperatures and comfort during the August 2003 heat wave. BUILDING SERVICE ENGINEER TECHNOL 26: 285-300.
    Xu Q. 2001. Abrupt change of the mid-summer climate in central east China by the influence of atmospheric pollution. Atmospheric Environment 35: 5029-40.
    Ye X, Wolff R, Yu W, Vaneckova P, Pan X, Tong S. 2012. Ambient temperature and morbidity: a review of epidemiological evidence. Environ Health Perspect 120: 19-28.
    Zhang K, Oswald EM, Brown DG, Brines SJ, Gronlund CJ, White-Newsome JL, et al. 2011. Geostatistical exploration of spatial variation of summertime temperatures in the Detroit metropolitan region. Environ Res 111: 1046-53.
    呂毓倫.2008.「應用遙測衛星地表溫度資料探討都市熱島現象與社經空間發展之關係」,國立成功大學都市計劃研究所碩士論文。
    林憲德.2009. 人居熱環境書籍,台南:詹氏書局。
    孫振儀.2003. 台南都市熱岛研究」,國立成功大學建築研究所碩士論文。
    孫振義.2008.「運用遙測技術於都市熱島效應之研究」,國立成功大學建築研究所博士論文。
    陳雲蘭.2008. 百年來台灣氣候的變化,科學發展 424:6-11。
    張苑菱.2010.「台中市都市熱島效應與土地覆蓋影響之研究」,逢甲大學土地管理學系碩士論文。
    鄭元良.2006.「歷史建築室內溫熱環境評估之研究」,國立成功大學建築研究所博士論文。
    蘇慧貞.2002.「室內/室外空氣污染物之國民健康風險評估及管制成本效益分析」,行政院環保署專題委託研究計劃-國立成功大學環境醫學研究所。
    蒙特婁特魯多機場氣象站.2005. 6月至8月大氣溫度統計資料,加拿大氣象站。
    底特律大都會機場氣象站.2009. 6月至8月大氣溫度統計資料,美國氣象站。
    中華民國統計資訊網.2010. 民國99年人口普查資料,臺灣行政院統計處。
    財團法人臺灣綠色產力基金會.2010. 非生產性質行業能源查核年報,臺灣經濟部能源局。
    內政部營建署.2011. 民國100年營建統計年報-建築物開工統計(按構造別分),臺灣內政部。
    中央氣象局.2012. 台灣氣候過去週、月、季及年統計資料,臺灣中央氣象局。
    內政部不動產資訊平台.2013. 住宅統計資訊查詢102年第一季,臺灣內政部。

    下載圖示 校內:2020-01-01公開
    校外:2020-01-01公開
    QR CODE