簡易檢索 / 詳目顯示

研究生: 唐翰
MUJAHID, ANAS
論文名稱: 有機共軛分子二極體單重態裂變與三重態湮滅上轉換反應
SINGLET FISSION AND TRIPLET–TRIPLET ANNIHILATION UPCONVERSION REACTIONS IN ORGANIC CONJUGATED MOLECULE DIODES
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 132
外文關鍵詞: singlet fission, triplet-triplet annihilation, sub-bandgap, above bandgap energy
ORCID: 0009-0004-0719-0430
ResearchGate: https://www.researchgate.net/profile/Anas-Mujahid-2/research
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • First, this dissertation establishes that magneto-electroluminescence (MEL) measurements must be performed under constant-current conditions. At constant voltage, the MEL response is mediated by magnetoconductance (MC), leading to misinterpretation. This is systematically validated in both polymer-based and TADF organic light-emitting diodes, providing a critical guideline for reliable magnetic field characterization.
    Second, it validates the possibility of utilizing the above-bandgap excitation energy through the endothermic singlet fission (SF) process. Using tetracene as a model, excitation-energy-dependent SF is revealed by magneto-photoluminescence, showing a breakdown of Kasha’s rule, where high-energy excitation yields a higher degree of SF. Endothermic SF proceeds via ultrafast formation of a correlated triplet–triplet 1(TT) pair followed by thermally activated triplet separation. Device-level validation confirms SF-assisted photocurrent generation, with enhanced IPCE in the 300-400 nm region contributing ~33% of total short-circuit current. Incorporation of a C60 acceptor enabling ultrafast charge transfer (~0.5 ps) suppresses this SF-related feature, confirming SF-mediated photocurrent generation.
    Finally, the dissertation uncovers the overlooked back charge separation (BCS) effect in sub-bandgap rubrene/C60 devices, where the charge transfer (CT) state acts as a recombination zone, and emission is obtained from rubrene through the triplet–triplet annihilation (TTA) upconversion process. BCS limits luminance and rapidly reduces EQE. Rubrene thickness optimization and interfacial engineering mitigate BCS but shift recombination from TTA to SF. Introducing FRET dopants bypasses BCS and enhances EQE by an order of magnitude via efficient TTA, with all mechanisms confirmed by magnetic field effect measurements.

    ABSTRACT I ACKNOWLEDGEMENTS II TABLE OF CONTENTS IV LIST OF FIGURES VIII LIST OF ACRONYMS X CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Overview of organic devices 2 1.3 Magnetic field effects in organic devices 6 1.4 Motivation of the research 7 1.5 Objectives and scope of the thesis 8 CHAPTER 2 LITERATURE REVIEW 10 2.1 Overview of organic semiconductors 10 2.2 Exciton dynamics: singlets and triplets 11 2.3 Role of exciton dynamics and spin physics 12 2.4 Brief overview of magnetic field effects in organic semiconductors 14 2.5 Theoretical models of magnetic-field effects 16 2.5.1 Polaron pair model 17 2.5.2 Bipolaron model 18 2.5.3 Δg model 19 2.5.4 Exciton model 20 2.6 Singlet fission 22 2.6.1 Exothermic singlet fission 23 2.6.2 Endothermic singlet fission 24 2.7 Triplet-triplet annihilation upconversion 24 2.8 Thermally activated delayed fluorescence process 26 2.9 Summary and research gaps 28 2.9.1 First research gap 28 2.9.2 Second research gap 29 2.9.3 Third research gap 30 CHAPTER 3 DEVICE FABRICATION AND MEASUREMENTS 32 3.1 Fabrication 32 3.1.1 ITO electrode patterning via photolithography 32 3.1.2 Substrate cleaning 32 3.1.3 Soft bake 33 3.1.4 UV exposure 33 3.1.5 Development 33 3.1.6 Hard bake 33 3.1.7 Etching 33 3.1.8 Final cleaning 33 3.2 Final fabrication process 34 3.3 Chemical structures of materials used in this dissertation 36 3.4 Measurement setup 37 3.4.1 Electrical characterization 37 3.4.2 MEL and MC measurements 37 3.4.3 MPL measurement 41 3.4.4 IPCE measurement 41 3.4.5 Femtosecond transient absorption measurement analysis 43 3.4.6 Theoretical data analysis 45 CHAPTER 4 MAGNETOELECTROLUMINENCE RESPONSES MEDIATED BY MAGNETOCONDUCTANCE IN POLYMER AND TADF-BASED LEDS 46 4.1 Introduction 46 4.2 Theoretical framework and device structure 48 4.2.1 The SYPPV-based device with balanced charge carrier dynamics 49 4.2.2 The energy band diagram of the TADF-based device with unbalanced charge carrier dynamics 50 4.2.3 The energy band diagram of the TADF-based device with balanced charge carrier dynamics 52 4.3 Experimental results and discussion 54 4.4 Summary 66 CHAPTER 5 ENDOTHERMIC SINGLET FISSION PROCESS IN HARVESTING THE HIGH-LEVEL EXCITATION ENERGY FOR TETRACENE-BASED PHOTODIODE 67 5.1 Introduction 67 5.2 Experimental results and discussion 71 5.3.1 Endothermic SF in a practical organic photodiode 80 5.4 Summary 86 CHAPTER 6 UNPRECEDENTED EXTERNAL QUANTUM EFFICIENCY BOOST IN SUB-BANDGAP OLEDS 87 6.1 Introduction 87 6.2 Discussion 89 6.2.1 Blocking interface method 90 6.2.2 Thickness-dependent recombination 91 6.3.1 Enabling FRET by introducing a dopant 91 6.3 Summary 92 CHAPTER 7 CONCLUSION AND FUTURE WORK 93 7.1 Conclusion 93 7.2 Future work 95 7.2.1 Singlet fission-enabled UV photodetectors 95 7.2.2 Singlet fission energy transfer to perovskites 97 7.2.3 Sub-bandgap OLEDs enabled by controlled CT-FRET balance 98 REFERENCES 99 LIST OF PUBLICATIONS 120 LIST OF RECEIVED AWARDS 120

    [1]. X. Xu, L. Sun, K. Shen, and S. Zhang, “Organic and hybrid organic–inorganic flexible optoelectronics: Recent advances and perspectives,” Synth. Met. 256, 116137 (2019).
    [2]. T. Grünbaum, S. Bange, W. Jiang, A. E. Leung, T. A. Darwish, P. L. Burn, and J. M. Lupton, “Measuring the magnetic field amplitude of rf radiation by the quasistatic magnetic field effect in organic light-emitting diodes,” Phys. Rev. Appl. 15, 064001 (2021).
    [3]. C. J. Bardeen, “The structure and dynamics of molecular excitons,” Annu. Rev. Phys. Chem. 65, 127 (2014).
    [4]. Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, and M. P. Aldred, “Recent advances in organic thermally activated delayed fluorescence materials,” Chem. Soc. Rev. 46, 915 (2017).
    [5]. X.-K. Chen, D. Kim, and J.-L. Brédas, “Thermally activated delayed fluorescence (TADF) path toward efficient electroluminescence via spin–orbit coupling and spin–vibronic coupling,” Acc. Chem. Res. 51, 2215 (2018).
    [6]. M. B. Smith and J. Michl, “Singlet fission,” Chem. Rev. 110, 6891 (2010).
    [7]. P. Bharmoria, H. Bildirir, and K. Moth-Poulsen, “Triplet–triplet annihilation based near infrared to visible molecular photon upconversion,” Chem. Soc. Rev. 49, 6529 (2020).
    [8]. J. Kalinowski, M. Cocchi, D. Virgili, P. Di Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380, 710 (2003).
    [9]. S. A. Bagnich, U. Niedermeier, C. Melzer, W. Sarfert, and H. von Seggern, “Origin of magnetic field effect enhancement by electrical stress in organic light emitting diodes,” J. Appl. Phys. 105, 123706 (2009).
    [10]. E. Ehrenfreund and Z. V. Vardeny, “Effects of magnetic field on conductance and electroluminescence in organic devices,” Isr. J. Chem. 52, 552 (2012).
    [11]. M. Wohlgenannt, P. A. Bobbert, and B. Koopmans, “Intrinsic magnetic field effects in organic semiconductors,” MRS Bull. 39, 590 (2014).
    [12]. C. Xiang, C. Peng, Y. Chen, and F. So, “Origin of sub-bandgap electroluminescence in organic light-emitting diodes,” Small 11, 5439 (2015).
    [13]. R. Xu, C. Zhang, and M. Xiao, “Magnetic field effects on singlet fission dynamics,” Trends Chem. 4, 528 (2022).
    [14]. S. Engmann, A. J. Barito, E. G. Bittle, N. C. Giebink, L. J. Richter, and D. J. Gundlach, “Higher order effects in organic LEDs with sub-bandgap electroluminescence,” Nat. Commun. 10, 227 (2019).
    [15]. S. N. Sanders, A. B. Pun, K. R. Parenti, E. Kumarasamy, L. M. Yablon, M. Y. Sfeir, and L. M. Campos, “Understanding the bound triplet-pair state in singlet fission,” Chem 5, 1988 (2019).
    [16]. R. Liu, Y. Zhang, Y. L. Lei, P. Chen, and Z. H. Xiong, “Magnetic-field-dependent triplet–triplet annihilation in Alq3-based organic light-emitting diodes at different temperatures,” J. Appl. Phys. 105, 093719 (2009).
    [17]. D. P. Waters, G. Joshi, M. Kavand, M. E. Limes, H. Malissa, P. L. Burn, J. M. Lupton, and C. Boehme, “The spin-Dicke effect in OLED magnetoresistance,” Nat. Phys. 11, 910 (2015).
    [18]. C. Gao, W. W. H. Wong, Z. Qin, S. C. Lo, E. B. Namdas, H. Dong, and W. Hu, “Application of triplet–triplet annihilation upconversion in organic optoelectronic devices: advances and perspectives,” Adv. Mater. 33, 2100704 (2021).
    [19]. O. Ostroverkhova, “Organic optoelectronic materials: mechanisms and applications,” Chem. Rev. 116, 13279 (2016).
    [20]. Y. Zhou and C. Wang, “Organic optoelectronics creating new opportunities for science and applications,” Front. Optoelectron. 15, 51 (2022).
    [21]. X. Li, S. Fu, Y. Xie, and Z. Li, “Thermally activated delayed fluorescence materials for organic light-emitting diodes,” Rep. Prog. Phys. 86, 096501 (2023).
    [22]. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492, 234 (2012).
    [23]. Q. Peng, A. Li, Y. Fan, P. Chen, and F. Li, “Studying the influence of triplet deactivation on the singlet–triplet inter-conversion in intra-molecular charge-transfer fluorescence-based OLEDs by magneto-electroluminescence,” J. Mater. Chem. C 2, 6264 (2014).
    [24]. N. Bunzmann, S. Weissenseel, L. Kudriashova, J. Gruene, B. Krugmann, J. V. Grazulevicius, A. Sperlich, and V. Dyakonov, “Optically and electrically excited intermediate electronic states in donor:acceptor based OLEDs,” Mater. Horiz. 7, 1126 (2020).
    [25]. T. Shan, X. Hou, X. Yin, and X. Guo, “Organic photodiodes: device engineering and applications,” Front. Optoelectron. 15, 49 (2022).
    [26]. C.-Y. Cheng, N. Chitraningrum, X.-M. Chen, T.-C. Wen, and T.-F. Guo, “Magnetic field effect of the singlet fission reaction in tetracene-based diodes,” Org. Electron. 56, 11 (2018).
    [27]. T. C. Wu, N. J. Thompson, D. N. Congreve, E. Hontz, S. R. Yost, T. Van Voorhis, and M. A. Baldo, “Singlet fission efficiency in tetracene-based organic solar cells,” Appl. Phys. Lett. 104, 193901 (2014).
    [28]. H.-J. Jang, E. G. Bittle, Q. Zhang, A. J. Biacchi, C. A. Richter, and D. J. Gundlach, “Electrical detection of singlet fission in single crystal tetracene transistors,” ACS Nano 13, 61 (2019).
    [29]. A. Mujahid, C.-C. Wu, S.-H. Luo, C.-H. Hsu, B.-H. Chen, C.-H. Lu, W.-Z. Feng, S.-D. Yang, P.-T. Chou, and T.-F. Guo, “Endothermic singlet fission process in harvesting the high-level excitation energy for tetracene-based photodiode,” Adv. Opt. Mater. 13, e01810 (2025).
    [30]. S. K. Kim, R. Lampande, and J. H. Kwon, “Technical status of top-emission organic light-emitting diodes,” J. Inf. Disp. 22, 115 (2021).
    [31]. C.-H. Lee, J.-H. Choi, S.-Y. Hyun, J.-H. Baek, B. Kang, and G.-D. Lee, “Design of a structure for optimized optical performance of a full colored organic light-emitting diode on a parameter space map,” Polymers 14, 585 (2022).
    [32]. H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66 (1992).
    [33]. H. Cho, J. Chung, J. Song, J. Lee, H. Lee, J. Lee, J. Moon, S. Yoo, and N. S. Cho, “Importance of Purcell factor for optimizing structure of organic light-emitting diodes,” Opt. Express 27, 11057 (2019).
    [34]. R. Huang, J. Hu, Z. Yang, Y. Kohama, X. Zhang, X. Zhu, H. Zuo, J. Zou, T. Peng, L. Li, G. Xu, and Y. Han, “Magnetic field effect on spin-polarized excitons in two-dimensional cesium lead bromide perovskites,” ACS Photonics 11, 3160 (2024).
    [35]. Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, “Large magnetoresistance in nonmagnetic π-conjugated semiconductor thin film devices,” Phys. Rev. B 72, 205202 (2005).
    [36]. M. Gobbi and E. Orgiu, “The rise of organic magnetoresistance: materials and challenges,” J. Mater. Chem. C 5, 5572 (2017).
    [37]. T. M. Clarke and J. R. Durrant, “Charge photogeneration in organic solar cells,” Chem. Rev. 110, 6736 (2010).
    [38]. C. Deibel and V. Dyakonov, “Polymer–fullerene bulk heterojunction solar cells,” Rep. Prog. Phys. 73, 096401 (2010).
    [39]. S. Kashani, J. J. Rech, T. Liu, K. Baustert, A. Ghaffari, I. Angunawela, Y. Xiong, A. Dinku, W. You, K. Graham, and H. Ade, “Exciton binding energy in organic polymers: Experimental considerations and tuning prospects,” Adv. Energy Mater. 14, 2302837 (2024).
    [40]. S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Rev. Mod. Phys. 85, 1245 (2013).
    [41]. P. Rajamalli, N. Senthilkumar, P. Gandeepan, C.-C. Ren-Wu, H.-W. Lin, and C.-H. Cheng, “A method for reducing the singlet–triplet energy gaps of TADF materials for improving the blue OLED efficiency,” ACS Appl. Mater. Interfaces 8, 27026 (2016).
    [42]. Z. Wu, Y. Liu, L. Yu, C. Zhao, D. Yang, X. Qiao, J. Chen, C. Yang, H. Kleemann, K. Leo, and D. Ma, “Strategic-tuning of radiative excitons for efficient and stable fluorescent white organic light-emitting diodes,” Nat. Commun. 10, 2380 (2019).
    [43]. D. Casanova, “Electronic structure study of singlet fission in tetracene derivatives,” J. Chem. Theory Comput. 10, 324 (2014).
    [44]. T. N. Singh-Rachford and F. N. Castellano, “Photon upconversion based on sensitized triplet–triplet annihilation,” Coord. Chem. Rev. 254, 2560 (2010).
    [45]. R. Ieuji, K. Goushi, and C. Adachi, “Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes,” Nat. Commun. 10, 5283 (2019).
    [46]. T. Scharff, W. Ratzke, J. Zipfel, P. Klemm, S. Bange, and J. M. Lupton, “Complete polarization of electronic spins in OLEDs,” Nat. Commun. 12, 2071 (2021).
    [47]. A. H. Davis and K. Bussmann, “Large magnetic field effects in organic light-emitting diodes based on tris(8-hydroxyquinoline) aluminum (Alq3)/N,N′-di(naphthalen-1-yl)-N,N′-diphenyl-benzidine (NPB) bilayers,” J. Vac. Sci. Technol. A 22, 1885 (2004).
    [48]. Y. Sheng, T. D. Nguyen, G. Veeraraghavan, Ö. Mermer, M. Wohlgenannt, S. Qiu, and U. Scherf, “Hyperfine interaction and magnetoresistance in organic semiconductors,” Phys. Rev. B 74, 045213 (2006).
    [49]. P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, “Bipolaron mechanism for organic magnetoresistance,” Phys. Rev. Lett. 99, 216801 (2007).
    [50]. F. Braun, T. Scharff, S. Bange, W. Jiang, T. A. Darwish, P. L. Burn, V. V. Mkhitaryan, and J. M. Lupton, “Low-temperature magnetoelectroluminescence of organic light-emitting diodes: separating excitonic effects from carrier-pair singlet–triplet mixing,” Phys. Rev. B 110, 014204 (2024).
    [51]. X. Tang, X. Zhao, H. Zhu, L. Tu, C. Ma, Y. Wang, S. Ye, and Z. Xiong, “Efficient tuning of the conversion from ISC to high-level RISC via adjusting the triplet energies of charge-transporting layers in rubrene-doped OLEDs,” J. Mater. Chem. C 9, 2775 (2021).
    [52]. A. Mujahid, Y. Lin, C.-T. Li, W.-C. Liu, Y.-T. Lee, and T.-F. Guo, “Magneto-electroluminescence responses mediated by magneto-conductance in polymer and thermally activated delayed fluorescence-emitter-based light-emitting diodes,” Adv. Photonics Res. 6, 2400154 (2025).
    [53]. K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nat. Photon. 6, 253 (2012).
    [54]. Q. Chen, W. Jia, L. Chen, D. Yuan, Y. Zou, and Z. Xiong, “Determining the origin of half-bandgap-voltage electroluminescence in bifunctional rubrene/C60 devices,” Sci. Rep. 6, 25331 (2016).
    [55]. L. Xin, C. Li, F. Li, S. Liu, and B. Hu, “Inversion of magnetic field effects on electrical current and electroluminescence in tri-(8-hydroxyquinoline)-aluminum based light-emitting diodes,” Appl. Phys. Lett. 95, 123306 (2009).
    [56]. H. Xu, M. Wang, Z.-G. Yu, K. Wang, and B. Hu, “Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes,” Adv. Phys. 68, 49 (2019).
    [57]. F. Li, A. J. Gillett, Q. Gu, J. Ding, Z. Chen, T. J. H. Hele, W. K. Myers, R. H. Friend, and E. W. Evans, “Singlet and triplet to doublet energy transfer: improving organic light-emitting diodes with radicals,” Nat. Commun. 13, 2744 (2022).
    [58]. S. Baniya, Z. Pang, D. Sun, Y. Zhai, O. Kwon, H. Choi, B. Choi, S. Lee, and Z. V. Vardeny, “Magnetic field effect in organic light-emitting diodes based on electron donor–acceptor exciplex chromophores doped with fluorescent emitters,” Adv. Funct. Mater. 26, 6930 (2016).
    [59]. Q. Peng, P. Chen, J. Sun, and F. Li, “Magnetic field effects on electroluminescence emanated simultaneously from blue fluorescent and red phosphorescent emissive layers of an organic light-emitting diode,” Org. Electron. 13, 3040 (2012).
    [60]. Y. Lei, Q. Zhang, L. Chen, Y. Ling, P. Chen, Q. Song, and Z. Xiong, “Ultralarge magneto-electroluminescence in exciplex-based devices driven by field-induced reverse intersystem crossing,” Adv. Opt. Mater. 4, 694 (2016).
    [61]. T. Basel, D. Sun, S. Baniya, R. McLaughlin, H. Choi, O. Kwon, and Z. V. Vardeny, “Magnetic field enhancement of organic light-emitting diodes based on electron donor–acceptor exciplex,” Adv. Electron. Mater. 2, 1500248 (2016).
    [62]. R. Pan, X. Tang, Y. Hu, H. Zhu, J. Deng, and Z. Xiong, “Extraordinary magnetic field effects mediated by spin-pair interaction and electron mobility in thermally activated delayed fluorescence-based OLEDs with quantum-well structure,” J. Mater. Chem. C 7, 2421 (2019).
    [63]. C. Liu, H. Du, Y. Yu, Z. Chen, J. Ren, J. Fan, Q. Liu, S. Han, and Z. Pang, “Dynamics of electron–hole pairs in interface exciplex OLEDs investigated by magnetic field effects,” Org. Electron. 128, 107025 (2024).
    [64]. A. Obolda, Q. Peng, C. He, T. Zhang, J. Ren, H. Ma, Z. Shuai, and F. Li, “Triplet–polaron-interaction–induced upconversion from triplet to singlet: A possible way to obtain highly efficient OLEDs,” Adv. Mater. 28, 4740 (2016).
    [65]. P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, “Magnetoresistance in organic light-emitting diode structures under illumination,” Phys. Rev. B 76, 235202 (2007).
    [66]. Y. Zhang, R. Liu, Y. L. Lei, and Z. H. Xiong, “Low temperature magnetic field effects in Alq3-based organic light-emitting diodes,” Appl. Phys. Lett. 94, 083307 (2009).
    [67]. B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500 (2009).
    [68]. X. Qiao, P. Yuan, D. Ma, T. Ahamad, and S. M. Alshehri, “Electrical pumped energy up-conversion: A non-linear electroluminescence process mediated by triplet–triplet annihilation,” Org. Electron. 46, 1 (2017).
    [69]. P. Chen, Z. Xiong, Q. Peng, J. Bai, S. Zhang, and F. Li, “Magneto-electroluminescence as a tool to discern the origin of delayed fluorescence: Reverse intersystem crossing or triplet–triplet annihilation?,” Adv. Opt. Mater. 2, 142 (2014).
    [70]. Y. Chen, W. Jia, J. Xiang, D. Yuan, Q. Chen, L. Chen, and Z. Xiong, “Identify triplet-charge interaction in rubrene-based diodes using magneto-conductance: Coexistence of dissociation and scattering channels,” Org. Electron. 39, 207 (2016).
    [71]. J. Song, Y. Guan, C. Wang, X. Bao, W. Li, L. Chen, and L. Niu, “Investigations on exciton recombination and annihilation in TmPyPB-ETL OLEDs using magnetic field effects,” Phys. Chem. Chem. Phys. 25, 23783 (2023).
    [72]. Y. Ning, X. Zhao, F. Wu, Y. Wu, J. Chen, F. Wei, H. Wang, and Z. Xiong, “Charge-transfer dynamics in OLEDs with coexisting electroplex and exciton states,” Phys. Rev. Appl. 19, 064055 (2023).
    [73]. J. Chi, L. Chen, X. Qiao, S. Xiao, X. Guo, and D. Ma, “Visualizing the exciton formation channel in exciplex-based organic light-emitting diodes,” Org. Electron. 105, 106497 (2022).
    [74]. X. Zhao, J. Chen, X. Tang, F. Wu, Y. Ning, X. Chen, and Z. Xiong, “Conversions from normal to abnormal current-dependent ISC and from abnormal to normal current-dependent RISC processes in exciplex-based OLEDs,” Adv. Mater. Interfaces 9, 2200155 (2022).
    [75]. P. Yuan, X. Qiao, D. Yan, and D. Ma, “Magnetic field effects on the quenching of triplet excitons in exciplex-based organic light-emitting diodes,” J. Mater. Chem. C 6, 5721 (2018).
    [76]. F. Wu, X. Zhao, H. Zhu, X. Tang, Y. Ning, J. Chen, X. Chen, and Z. Xiong, “Identifying the exciplex-to-exciplex energy transfer in tricomponent exciplex-based OLEDs through magnetic field effect measurements,” ACS Photonics 9, 2713 (2022).
    [77]. X. Zhao, J. Chen, L. Cheng, S. Yang, B. Wang, T. Peng, J. Liu, S. Zhang, and Z. Xiong, “Abundant evolution processes of polaron-pairs and exciplex states with various electron–hole coupling distances in exciplex-based OLEDs by modifying device hole-injection abilities,” ACS Photonics 11, 230 (2024).
    [78]. J. Song, Y. Guan, C. Wang, X. Bao, W. Li, K. Peng, S. Xu, L. Chen, and L. Niu, “Mediation of energy transfer on magnetic field effects in Px-CNP-based OLEDs,” J. Mater. Chem. C 11, 11952 (2023).
    [79]. J. Song, C. Wang, Y. Guan, X. Bao, W. J. Li, L. Chen, and L. Niu, “Mediation of exciton concentration on magnetic field effects in NPB:Alq3-based heterojunction OLEDs,” RSC Adv. 13, 23619 (2023).
    [80]. X. Zhao, X. Tang, H. Zhu, C. Ma, Y. Wang, S. Ye, L. Tu, and Z. Xiong, “Room-temperature observation for reverse intersystem crossing in exciplex-based OLEDs with balanced charge injection,” ACS Appl. Electron. Mater. 3, 3034 (2021).
    [81]. L. Tu, X. Tang, Y. Wang, X. Zhao, C. Ma, S. Ye, and Z. Xiong, “Dynamic behaviors of exciplex states in rubrene/C60-based OLEDs with sub-band-gap turn-on electroluminescence,” Phys. Rev. Appl. 16, 064002 (2021).
    [82]. X. Tang, Y. Hu, W. Jia, R. Pan, J. Deng, Z. He, and Z. Xiong, “Intersystem crossing and triplet fusion in singlet-fission-dominated rubrene-based OLEDs under high bias current,” ACS Appl. Mater. Interfaces 10, 1948 (2018).
    [83]. X. Tang, R. Pan, X. Zhao, H. Zhu, and Z. Xiong, “Achievement of high-level reverse intersystem crossing in rubrene-doped organic light-emitting diodes,” J. Phys. Chem. Lett. 11, 2804 (2020).
    [84]. N. Chitraningrum, T.-Y. Chu, P.-T. Huang, T.-C. Wen, and T.-F. Guo, “The triplet–triplet annihilation process of triplet to singlet excitons to fluorescence in polymer light-emitting diodes,” Org. Electron. 62, 505 (2018).
    [85]. B. Hu and Y. Wu, “Tuning magnetoresistance between positive and negative values in organic semiconductors,” Nat. Mater. 6, 985 (2007).
    [86]. T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, and C.-H. Cheng, “Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off,” Nat. Photon. 12, 235 (2018).
    [87]. X. Tang, R. Pan, J. Xu, W. Jia, F. Qu, X. Zhao, and Z. Xiong, “Abnormal current dependence of high-level reverse intersystem crossing induced by Dexter energy transfer from hole-transporting layer,” J. Mater. Chem. C 8, 11061 (2020).
    [88]. X. Tang, R. Pan, X. Zhao, W. Jia, Y. Wang, C. Ma, L. Tu, and Z. Xiong, “Full confinement of high-lying triplet states to achieve high-level reverse intersystem crossing in rubrene: a strategy for obtaining the record-high EQE of 16.1% with low efficiency roll-off,” Adv. Funct. Mater. 30, 2005765 (2020).
    [89]. H. Wang, J. Chen, S. Yang, H. Lu, F. Wei, Y. Wu, X. Zhao, L. Cheng, Z. Li, Y. Yi, and T. Yu, “Harvesting hot excitons for high-efficiency OLEDs with extremely low-efficiency roll-off via utilizing the cascade exciton energy transfer from host and sensitizer to emitter,” Adv. Funct. Mater. 34, 2403388 (2024).
    [90]. Y. Wang, Y. Ning, F. Wu, J. Chen, X. Chen, and Z. Xiong, “Observation of reverse intersystem-crossing from the upper-level triplet to lowest singlet excitons (T2→S1) in tetra(t-butyl)rubrene-based OLEDs for enhanced light-emission,” Adv. Funct. Mater. 32, 2202882 (2022).
    [91]. L. Chen, X. Qiao, S. Xiao, J. Chi, D. Yang, D. Ma, and Y. Ma, “A case study on hot exciton mechanism in OLEDs,” Appl. Phys. Lett. 120, 083501 (2022).
    [92]. Y. Yiyan, Q. J. Shui, H. Iwasaki, D. Nakahigashi, Y. Majima, K. I. Nakayama, N. Aizawa, and S. Izawa, “White organic light-emitting diodes with extremely low turn-on voltage at 1.5 V,” J. Mater. Chem. C 13, 16963 (2025).
    [93]. S. J. Wang, A. Kirch, M. Sawatzki, T. Achenbach, H. Kleemann, S. Reineke, and K. Leo, “Highly crystalline rubrene light-emitting diodes with epitaxial growth,” Adv. Funct. Mater. 33, 2213768 (2023).
    [94]. T. Hasegawa and J. Takeya, “Organic field-effect transistors using single crystals,” Sci. Technol. Adv. Mater. 10, 024314 (2009).
    [95]. S. Karak, J. A. Lim, S. Ferdous, V. V. Duzhko, and A. L. Briseno, “Photovoltaic effect at the Schottky interface with organic single crystal rubrene,” Adv. Funct. Mater. 24, 1039 (2014).
    [96]. A. K. Pandey and J.-M. Nunzi, “Rubrene/fullerene heterostructures with a half-gap electroluminescence threshold and large photovoltage,” Adv. Mater. 19, 3613 (2007).
    [97]. S. Izawa, M. Morimoto, S. Naka, and M. Hiramoto, “Efficient interfacial upconversion enabling bright emission at an extremely low driving voltage in organic light-emitting diodes,” Adv. Opt. Mater. 10, 2101710 (2022).
    [98]. A. K. Pandey, “Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics,” Sci. Rep. 5, 7787 (2015).
    [99]. S. Izawa, M. Morimoto, K. Fujimoto, K. Banno, Y. Majima, M. Takahashi, S. Naka, and M. Hiramoto, “Blue organic light-emitting diode with a turn-on voltage of 1.47 V,” Nat. Commun. 14, 5494 (2023).
    [100]. T. Oono, Y. Aoki, T. Sasaki, H. Shoji, T. Okada, T. Shimizu, T. Hatakeyama, and H. Fukagawa, “A pathway to coexistence of electroluminescence and photovoltaic conversion in organic devices,” Nat. Commun. 16, 67332 (2025).
    [101]. X. Tang, L. Tu, X. Zhao, J. Chen, Y. Ning, F. Wu, and Z. Xiong, “Realization of H-type aggregation in rubrene-doped OLEDs and its induced enhancement of delayed fluorescence,” J. Phys. Chem. C 126, 9456 (2022).
    [102]. K. Okumoto, H. Kanno, Y. Hamada, H. Takahashi, and K. Shibata, “High efficiency red organic light-emitting devices using polyacene derivatives as a hole-transporting layer,” Appl. Phys. Lett. 89, 013502 (2006).
    [103]. P. Bi, J. Wang, Z. Chen, Z. Li, C. Tan, J. Qiao, J. Dai, T. Zhang, J. Gao, W. P. Goh, C. Lyu, C. Jiang, X. Hao, J. Hou, and L. Yang, “Weak near-infrared light visualization enabled by smart multifunctional optoelectronics,” Adv. Mater. 37, 2416785 (2025).
    [104]. H. Zhu, W. Jia, L. Chen, X. Tang, Y. Hu, R. Pan, J. Deng, and Z. Xiong, “Figure of merit for evaluating the carrier generation capability of organic photodetectors,” J. Mater. Chem. C 7, 553 (2019).
    [105]. W. Jia, Q. Chen, Y. Chen, L. Chen, and Z. Xiong, “Magneto-conductance characteristics of trapped triplet–polaron and triplet–trapped polaron interactions in anthracene-based organic light-emitting diodes,” Phys. Chem. Chem. Phys. 18, 30733 (2016).
    [106]. J. Lee, P. Jadhav, P. D. Reusswig, S. R. Yost, N. J. Thompson, D. N. Congreve, E. Hontz, T. Van Voorhis, and M. A. Baldo, “Singlet exciton fission photovoltaics,” Acc. Chem. Res. 46, 1300 (2013).
    [107]. A. J. Baldacchino, M. I. Collins, M. P. Nielsen, T. W. Schmidt, D. R. McCamey, and M. J. Y. Tayebjee, “Singlet fission photovoltaics: progress and promising pathways,” Chem. Phys. Rev. 3, 021304 (2022).
    [108]. B. Ehrler, K. P. Musselman, M. L. Böhm, R. H. Friend, and N. C. Greenham, “Hybrid pentacene/a-silicon solar cells utilizing multiple carrier generation via singlet exciton fission,” Appl. Phys. Lett. 101, 153507 (2012).
    [109]. M. H. Futscher, A. Rao, and B. Ehrler, “The potential of singlet fission photon multipliers as an alternative to silicon-based tandem solar cells,” ACS Energy Lett. 3, 2587 (2018).
    [110]. T. S. Lee, Y. L. Lin, H. Kim, R. D. Pensack, B. P. Rand, and G. D. Scholes, “Triplet energy transfer governs the dissociation of the correlated triplet pair in exothermic singlet fission,” J. Phys. Chem. Lett. 9, 4087 (2018).
    [111]. E. G. Fuemmeler, S. N. Sanders, A. B. Pun, E. Kumarasamy, T. Zeng, K. Miyata, M. L. Steigerwald, X.-Y. Zhu, M. Y. Sfeir, L. M. Campos, and N. Ananth, “A direct mechanism of ultrafast intramolecular singlet fission in pentacene dimers,” ACS Cent. Sci. 2, 316 (2016).
    [112]. H. L. Stern, A. Cheminal, S. R. Yost, K. Broch, S. L. Bayliss, K. Chen, M. Tabachnyk, K. Thorley, N. Greenham, J. M. Hodgkiss, J. E. Anthony, M. Head-Gordon, A. J. Musser, A. Rao, and R. H. Friend, “Vibronically coherent ultrafast triplet-pair formation and subsequent thermally activated dissociation control efficient endothermic singlet fission,” Nat. Chem. 9, 1205 (2017).
    [113]. M. J. Y. Tayebjee, D. R. McCamey, and T. W. Schmidt, “Beyond Shockley–Queisser: molecular approaches to high-efficiency photovoltaics,” J. Phys. Chem. Lett. 6, 2367 (2015).
    [114]. P. Geng, D. Chen, S. B. Shivarudraiah, X. Chen, L. Guo, and J. E. Halpert, “Carrier dynamics of efficient triplet harvesting in AgBiS2/pentacene singlet fission solar cells,” Adv. Sci. 10, 2300177 (2023).
    [115]. X. Qiao, L. Luan, Y. Liu, Z. Yu, and B. Hu, “Inter-triplet spin–spin interaction effects on inter-conversion between different spin states in intermediate triplet–triplet pairs towards singlet fission,” Org. Electron. 15, 2168 (2014).
    [116]. M. J. Y. Tayebjee, S. N. Sanders, E. Kumarasamy, L. M. Campos, M. Y. Sfeir, and D. R. McCamey, “Quintet multiexciton dynamics in singlet fission,” Nat. Phys. 13, 182 (2017).
    [117]. N. V. Korovina, C.-H. Chang, and J. C. Johnson, “Spatial separation of triplet excitons drives endothermic singlet fission,” Nat. Chem. 12, 391 (2020).
    [118]. V. K. Thorsmølle, R. D. Averitt, J. Demsar, D. L. Smith, S. Tretiak, R. L. Martin, X. Chi, B. K. Crone, A. P. Ramirez, and A. J. Taylor, “Morphology effectively controls singlet–triplet exciton relaxation and charge transport in organic semiconductors,” Phys. Rev. Lett. 102, 017401 (2009).
    [119]. P. M. Zimmerman, F. Bell, D. Casanova, and M. Head-Gordon, “Mechanism for singlet fission in pentacene and tetracene: From single exciton to two triplets,” J. Am. Chem. Soc. 133, 19944 (2011).
    [120]. W.-L. Chan, M. Ligges, and X.-Y. Zhu, “The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain,” Nat. Chem. 4, 840 (2012).
    [121]. W.-L. Chan, T. C. Berkelbach, M. R. Provorse, N. R. Monahan, J. R. Tritsch, M. S. Hybertsen, D. R. Reichman, J. Gao, and X.-Y. Zhu, “The quantum coherent mechanism for singlet fission: Experiment and theory,” Acc. Chem. Res. 46, 1321 (2013).
    [122]. Z. Birech, M. Schwoerer, T. Schmeiler, J. Pflaum, and H. Schwoerer, “Ultrafast dynamics of excitons in tetracene single crystals,” J. Chem. Phys. 140, 114501 (2014).
    [123]. J. J. Burdett, D. Gosztola, and C. J. Bardeen, “The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: Kinetic evidence for a dark intermediate state and implications for singlet fission,” J. Chem. Phys. 135, 214508 (2011).
    [124]. M. W. B. Wilson, A. Rao, K. Johnson, S. Gélinas, R. Di Pietro, J. Clark, and R. H. Friend, “Temperature-independent singlet exciton fission in tetracene,” J. Am. Chem. Soc. 135, 16680 (2013).
    [125]. S. L. Bayliss, F. Kraffert, R. Wang, C. Zhang, R. Bittl, and J. Behrends, “Tuning spin dynamics in crystalline tetracene,” J. Phys. Chem. Lett. 10, 1908 (2019).
    [126]. G. B. Piland and C. J. Bardeen, “How morphology affects singlet fission in crystalline tetracene,” J. Phys. Chem. Lett. 6, 1841 (2015).
    [127]. C. D. Cruz, E. L. Chronister, and C. J. Bardeen, “Using temperature dependent fluorescence to evaluate singlet fission pathways in tetracene single crystals,” J. Chem. Phys. 153, 234504 (2020).
    [128]. Y. V. Aulin, K. M. Felter, D. D. Günbas, R. K. Dubey, W. F. Jager, and F. C. Grozema, “Morphology-independent efficient singlet exciton fission in perylene diimide thin films,” ChemPlusChem 83, 230 (2018).
    [129]. A. J. Musser, M. Liebel, C. Schnedermann, T. Wende, T. Kehoe, A. Rao, and P. Kukura, “Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission,” Nat. Phys. 11, 352 (2015).
    [130]. M. Wakasa, T. Yago, Y. Sonoda, and R. Katoh, “Structure and dynamics of triplet-exciton pairs generated from singlet fission studied via magnetic field effects,” Commun. Chem. 1, 9 (2018).
    [131]. M. Wakasa, M. Kaise, T. Yago, R. Katoh, Y. Wakikawa, and T. Ikoma, “What can be learned from magnetic field effects on singlet fission: Role of exchange interaction in excited triplet pairs,” J. Phys. Chem. C 119, 25840 (2015).
    [132]. R. C. Johnson, R. E. Merrifield, P. Avakian, and R. B. Flippen, “Effects of magnetic fields on the mutual annihilation of triplet excitons in molecular crystals,” Phys. Rev. Lett. 19, 285 (1967).
    [133]. R. J. Dillon, G. B. Piland, and C. J. Bardeen, “Different rates of singlet fission in monoclinic versus orthorhombic crystal forms of diphenylhexatriene,” J. Am. Chem. Soc. 135, 17278 (2013).
    [134]. R. E. Merrifield, “Magnetic effects on triplet exciton interactions,” Pure Appl. Chem. 27, 481 (1971).
    [135]. A. Thampi, H. L. Stern, A. Cheminal, M. J. Y. Tayebjee, A. J. Petty, J. E. Anthony, and A. Rao, “Elucidation of excitation energy dependent correlated triplet pair formation pathways in an endothermic singlet fission system,” J. Am. Chem. Soc. 140, 4613 (2018).
    [136]. T. Ullrich, D. Munz, and D. M. Guldi, “Unconventional singlet fission materials,” Chem. Soc. Rev. 50, 3485 (2021).
    [137]. B. J. Walker, A. J. Musser, D. Beljonne, and R. H. Friend, “Singlet exciton fission in solution,” Nat. Chem. 5, 1019 (2013).
    [138]. H. L. Stern, A. J. Musser, S. Gélinas, P. Parkinson, L. M. Herz, M. J. Bruzek, J. E. Anthony, R. H. Friend, and B. J. Walker, “Identification of a triplet pair intermediate in singlet exciton fission in solution,” Proc. Natl. Acad. Sci. U.S.A. 112, 7656 (2015).
    [139]. D. Vong, F. Maleki, E. C. Novak, L. L. Daemen, and A. J. Moulé, “Measuring intermolecular excited state geometry for favorable singlet fission in tetracene,” J. Phys. Chem. Lett. 15, 1188 (2024).
    [140]. M. Pinheiro, F. B. Machado, F. Plasser, A. J. A. Aquino, and H. Lischka, “A systematic analysis of excitonic properties to seek optimal singlet fission: The BN-substitution patterns in tetracene,” J. Mater. Chem. C 8, 7793 (2020).
    [141]. C. Zeiser, L. Moretti, F. Reicherter, H. F. Bettinger, M. Maiuri, G. Cerullo, and K. Broch, “Singlet fission in dideuterated tetracene and pentacene,” ChemPhotoChem 5, 758 (2021).
    [142]. R. M. Jacobberger, Y. Qiu, M. L. Williams, M. D. Krzyaniak, and M. R. Wasielewski, “Using molecular design to enhance the coherence time of quintet multiexcitons generated by singlet fission in single crystals,” J. Am. Chem. Soc. 144, 2276 (2022).
    [143]. B. Daiber, S. Maiti, S. M. Ferro, J. Bodin, A. F. J. van den Boom, S. L. Luxembourg, S. Kinge, S. P. Pujari, L. D. A. Siebbeles, and B. Ehrler, “Change in tetracene polymorphism facilitates triplet transfer in singlet fission-sensitized silicon solar cells,” J. Phys. Chem. Lett. 11, 8703 (2020).
    [144]. A. Nandi, B. Manna, and R. Ghosh, “Singlet fission dynamics in the 5,12-bis(phenylethynyl)tetracene thin film,” J. Phys. Chem. C 125, 2583 (2021).
    [145]. A. Rao and R. H. Friend, “Harnessing singlet exciton fission to break the Shockley–Queisser limit,” Nat. Rev. Mater. 2, 17063 (2017).
    [146]. A. B. Kolomeisky, X. Feng, and A. I. Krylov, “A simple kinetic model for singlet fission: A role of electronic and entropic contributions to macroscopic rates,” J. Phys. Chem. C 118, 5188 (2014).
    [147]. C.-W. Chu, Y. Shao, V. Shrotriya, and Y. Yang, “Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions,” Appl. Phys. Lett. 86, 243506 (2005).
    [148]. J. Kim, H. T. Teo, Y. Hong, H. Cha, W. Kim, C. Chi, and D. Kim, “Elucidating singlet-fission-born multiexciton dynamics via molecular engineering: A dilution principle extended to quintet triplet pair,” J. Am. Chem. Soc. 146, 10833 (2024).
    [149]. M. Fukumitsu, T. Fukui, Y. Shoji, T. Kajitani, R. Khan, N. V. Tkachenko, H. Sakai, T. Hasobe, and T. Fukushima, “Supramolecular scaffold–directed two-dimensional assembly of pentacene into a configuration to facilitate singlet fission,” Sci. Adv. 10, eadn7763 (2024).
    [150]. Y. Bo, Y. Hou, D. A. Lavergne, T. Clark, M. J. Ferguson, R. R. Tykwinski, and D. M. Guldi, “Reversible gating of singlet fission by tuning the role of a charge-transfer state,” Nat. Commun. 16, 2968 (2025).
    [151]. L. Xue, X. Song, and Y. Bu, “Structural dynamic impact of chromophores on singlet fission,” J. Phys. Chem. Lett. 16, 1956 (2025).
    [152]. L.-C. Lin, R. D. Dill, K. J. Thorley, S. R. Parkin, J. E. Anthony, J. C. Johnson, and N. H. Damrauer, “Revealing the singlet fission mechanism for a silane-bridged thienotetracene dimer,” J. Phys. Chem. A 128, 3982 (2024).
    [153]. M. Einzinger, T. Wu, J. F. Kompalla, H. L. Smith, C. F. Perkinson, L. Nienhaus, S. Wieghold, D. N. Congreve, A. Kahn, M. G. Bawendi, and M. A. Baldo, “Sensitization of silicon by singlet exciton fission in tetracene,” Nature 571, 90 (2019).
    [154]. S. J. Abdulrazzaq, A. O. Mousa, and T. M. Abbas, “Linear optical characterization of rhodamine band malachite green organic laser dyes mixture solutions,” Des. Eng. 9, 2546 (2021).
    [155]. R. E. Merrifield, P. Avakian, and R. P. Groff, “Fission of singlet excitons into pairs of triplet excitons in tetracene crystals”, Chem. Phys. Lett. 3, 155 (1969).
    [156]. E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, and H. H. Horhold, “Polaron-pair generation in poly(phenylene vinylenes)”, Phys. Rev. B 46, 9320 (1992).
    [157]. E. L. Frankevich, “On mechanisms of population of spin substates of polaron pairs”, Chem. Phys. 297, 315 (2004).
    [158]. S. Singh, and B. P. Stoicheff, “Double-photon excitation of fluorescence in anthracene single crystals”, J. Chem. Phys. 38, 2032 (1963).
    [159]. M. Pope and C. E. Swenberg, “Electronic processes in organic crystals”, 2nd ed., Oxford University Press, ISBN 978-0-19-512963-2 (1999).
    [160]. U. E. Steiner and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena”, Chem. Rev. 89, 51 (1989).
    [161]. W. Helfrich, “Destruction of triplet excitons in anthracene by injected electrons”, Phys. Rev. Lett. 16, 401 (1966).
    [162]. M. Wittmer and I. Z. Gränacher, “Exciton-charge carrier interactions in the electroluminescence of crystalline anthracene”, J. Chem. Phys. 63, 4187 (1975).
    [163]. C. J. Brabec, G. Zerza, G. Cerullo, S. D. Silvestri, S. Luzzati, J. C. Hummelen, and S. Sariciftci, “Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time”, Chem. Phys. Lett. 340, 232 (2001).
    [164]. R. Eisberg and R. Resnick, “Quantum physics of atoms, molecules, solids, nuclei, and particles”, 2nd ed., Wiley Press, ISBN 0-471-87373-X (1985).
    [165]. F. Wang, H. Bassler, and Z. V. Vardeny, “Studies of magnetoresistance in polymer/fullerene blends”, Phys. Rev. Lett. 101, 236805 (2008).

    QR CODE