簡易檢索 / 詳目顯示

研究生: 謝志敏
Hsieh, Chih-Min
論文名稱: 應用 RANS 模擬波浪通過潛堤和沙漣流場
Simulation of Wave Transformation and Flow Fields in Water Waves Passing over Submerged-Breakwaters and Rippled Beds Using RANS
指導教授: 許泰文
Hsu, Tai-Wen
黃榮鑑
Hwang, Robert R.
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 219
中文關鍵詞: 自由液面
外文關鍵詞: free surface
相關次數: 點閱:77下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在建立一套數值模式,模擬波浪通過不透水雙列潛堤和人工沙漣底床之渦流生成和減衰,藉以探討矩形潛堤和人工沙漣底床和波浪互制時液面的變化及內部流場的運動特性。數值模式採用有限體積法,求解雷諾平均 Navier-Stokes 方程式 (Reynolds Averaged Navier-Stokes Equations, RANS) ,以期能夠呈現波浪場中非線性與黏性效應的影響,同時配合 紊流模式來模擬紊流效應。其中時間差分項以顯式法 (explicit) 來離散,壓力場則藉著預測—修正方式 (predictor-corrector procedure) 來建立,配合 MAC (Marker And Cell) 交錯網格系統,採用不等間距網格,自由液面採用高度函數法以建立高效率的數值模式。本模式與傳統方法之最大不同係使用 RANS,模擬波浪與結構物互制,完整地考慮非線性、黏性和紊流效應,以展現流場的變化。
    本文將波浪分為孤立波 (solitary wave) 和週期波 (periodic wave) 兩大類分別討論。基於波浪由遠岸之深水區傳遞至近岸的淺水區,受地形變化影響產生淺化與折射現象,常形成淺水非線性運動。部分近海沿岸具較長波之波浪型態,類似孤立波運動,文獻上常用孤立波來表示海嘯 (tsunami) 、颱風暴潮 (storm surge) 等波浪特性,故瞭解孤立波之特性及研究孤立波與潛堤交互作用現象,乃為海岸工程重要課題。
    在海岸永續利用的考量下,佈置系列潛堤的新工法或人工沙漣,為近年來所考慮的海岸工法之一。而雙列潛堤是單列潛堤排列方式的延伸,也是系列潛堤應用的基礎。過去的文獻中,對於雙列潛堤資料相當缺乏。因此,本文也選擇雙列潛堤的流場進行研究。
    當波浪行經一波狀底床地形時,會有反射波產生,而在無流不透水的條件下,當自由液面水波波長為底床沙漣波長的兩倍時,波場於沙漣區前方會形成駐波,此時透射波會減小,反射波則會大增,此即為布拉格反射共振效應 (Bragg resonance)。運用此現象,可以於近岸海底或海洋結構物前設置人工沙洲使入射波能量衰減,以減少波浪對海岸及結構物的損害,因此許多學者紛紛投入此一研究行列。由於過去研究成果有限,為進一步瞭解布拉格共振之物理現象,本文利用 RANS 模式求解波浪通過沙漣底形之流場,進而探討波浪與人工沙漣底床地形交互作用後之不拉格共振現象。
    基於上述原因,本論文分成三大主題的研究,第一個主題為孤立波通過潛堤流場之探討;第二個主題為週期波通過雙列潛堤流場之探討;第三個主題為布拉格反射現象的探討。
    在孤立波與潛堤互制作用研究上:為了驗證數值計算之準確性,選取 (1) Lee 等人 (1982) 利用 LDA 量測孤立波經水平底床之水平、垂直速度和波形變化;(2) 藉由 Seabra-Santos 等人 (1987) 量測孤立波經半無限階梯之液面波高變化,驗證本數值計算結果。本文中同時探討孤立波通過潛堤流場變化、渦度、流線變化、受力、紊流能量收支。關於計算紊流能量收支方面,動能生成項扮演提供動能;對流有時扮演提供動能、有時消散動能。擴散項和能量消散率扮演消散動能的角色。整個過程中 項遠大於 項;潛堤上方的 的值較大,對流機制較重要。遠離結構物一段距離後,因紊流動能 K 幾乎很小,所以各項變化 (對流項、動能生成項、擴散項和能量消散項) 變得很小。
    在週期波通過雙列潛堤問題方面:首先在數值驗證方面數藉由試驗資料驗證波浪通過潛堤後之波高與水平、垂直速度及流場,並與理論解比較線性波層流邊界層速度剖面。本文以變換不透水雙列潛堤間距及波浪條件進行一系列數值模擬,探討波浪通過雙列潛堤的渦流機制、渦度,流線變化,並觀察週期內紊流動能的變化及流場中各物理量最大值空間分佈。為了研究波浪通過潛堤後非線性效應影響,本文亦討論波浪變形及主頻至三倍頻波浪振幅的變化。
    至於在週期波通過人工沙漣底床方面,本文數值結果與 Mase 等人 (1995) 比較相當吻合,文中著重於布拉格反射現象的探討,討論共振流場與無共振流場之差別。波浪通過人工沙連底床上方時,受到共振機制影響,波高逐漸減小;通過沙漣底床後,沙漣底床會反射部分入射波,而沙漣底床後的透射波高與入射波高相比,已明顯減小許多。結果中顯示波高最大值和最小值都出現在人工沙連底床的節點上。

    The purpose of the present study is to develop a numerical model suitable for investigating the entire vortex generation and dissipation processes as water waves pass over impermeable submerged-double-breakwaters and over the rigid sand ripples. The significant benefit of the present study over the traditional way of analyzing wave propagation problems is to apply the RANS (Reynolds Averaged Navier-Stokes) by taking account of the entire nonlinear, viscous and turbulent effects on the physical problem.
    The model is employed to simulate the flow kinematics and the turbulence effects in the RANS. The RANS is used to simulate the flow field; and the transport equations are discretized by the finite volume method, based on a staggered grid system with variable width and height. The unsteady term is treated by an explicit method. The pressure field is obtained by a predictor-corrector procedure. In order to update the free surface configuration with every time step, the Height Function (HF) method is implemented.
    The proposed model is used to study three different physical problems, which include a solitary wave passing over a submerged breakwater, waves propagating over submerged double breakwaters, and periodic waves passing over the artificial rippled beds.
    In the first case we successfully simulated the detailed interaction between a solitary wave and a submerged breakwater. In order to establish accuracy of the numerical model, simulated results were often compared with the existing experimental data of Lee et al. (1982) and Seabra-Santos et al. (1987). The simulated wave profile and the local velocity variations were found to be in very good agreement with those reported in the experiments. Following these verifications, we made a systematic study concerning the interaction of a solitary wave and a submerged breakwater. The temporal variation of the vortices was investigated in terms of the circulation. The induced drag forces and the turbulent energy budget acting on the solitary wave are also determined and discussed.
    In the second part of the thesis, the interactions of water waves and submerged-double-breakwaters were investigated. The simulated results for the incident wave profiles and the associated boundary layer flow behavior were compared with the available analytical solutions to verify the accuracy of the numerical scheme. The overall agreement between the simulated results and the existing laboratory measurements appeared quite satisfactory.
    By using the same numerical model, we conducted a series of additional numerical experiments with various incident wave conditions and with different spatial variation between the submerged breakwaters in order to study the generation and the evolution process of the vortices, their intensity, the temporal variation of the streamlines, and the turbulent kinetic energy. To better understand the nonlinear effects following the wave propagation over the submerged double breakwaters, we make a detailed investigation concerning the wave deformation process and the change in harmonic wave amplitude.
    Computed results demonstrate the detail flow separation mechanism both near the upstream and the downstream edges of the submerged breakwater. It is found that the clockwise vortices are produced at the down-wave edge of an obstacle when the wave crest passes over. The vortex is seen to dissipate and diminish as the wave trough arrives at the obstacle. Conversely, a counterclockwise vortex occurs at the up-wave edge of the obstacle when the wave trough passes and dissipates as the wave crest is above the obstacle. The vortex pair is observed to shed and form again at the lee side of the obstacle. The generation of vorticity with respect to the free surface has been investigation in this study. The nonlinear interaction among the incident wave components generates higher-order harmonics. Over the breakwater the magnitude of the higher-order component is found to increase. This is mainly due to the wave energy transfer from the fundamental harmonic to the higher-order harmonics. Trajectories of the fluid particles with initial location close to the structure were determined in order to provide an understanding of the possible sediment transport around submerged breakwaters. It has been found that the present model is quite efficient in accurately simulating the flow separation and the wave deformation process for the water waves propagating over impermeable submerged-double breakwaters.
    Finally, the numerical model is used to study the influence of periodic wave propagation over artificial rippled beds. The numerical results concerning the wave amplitudes and the impermeable rippled bed agree very well with the analytical findings of Mase et al. (1995). We observed that the transmitted waves become small due to the presence of the rippled beds. Necessary simulations are also conducted to investigate the effects of the Bragg scattering by ripples. In case of resonance, spatial distribution of wave amplitudes is observed to attain its pick value while approaching the upstream part of an wavy ripple bed and it became minimum at the downstream side of the ripple bed. On the other hand, the local kinetic energy is found to attain its minimum value at a place where potential energy became maximum. The investigations were extended to cover flow features both with and without Bragg resonance.

    中文摘要 I 英文摘要 IV 目錄 VII 圖目錄 X 表目錄 XIV 符號說明 XV 第一章 緒論 1 1-1 前言 1 1-2 前人研究 3 1-2-1 波浪通過潛堤之研究 3 1-2-1-1 理論方面 3 1-2-1-2 試驗方面 6 1-2-1-3 數值方面 7 1-2-1-4 模式應用方面 14 1-2-2 波浪通過沙漣底床之研究 17 1-3 研究目的 18 1-4 本文組織 20 第二章 理論架構 22 2-1 Reynolds Averaged Navier-Stokes 方程式 23 2-2 初始條件和邊界條件條件 29 2-2-1 上游邊界條件 30 2-2-2 下游邊界條件 34 2-2-3 底部邊界條件 35 2-2-4 自由表面邊界條件 36 第三章 數值方法 38 3-1 網格變數計算點之配置 38 3-1-1 交錯網格 (Staggered grid) 38 3-1-2 網格分類 39 3-2 方程式之離散化 40 3-3 速度與壓力耦合技巧 42 3-4 自由表面的處理 46 3-5 壁函數法的處理 47 3-6 計算程序 48 第四章 孤立波與潛堤互制分析 51 4-1 數值模式驗證 52 4-1-1 孤立波經過水平底床 52 4-1-2 孤立波經過半無限階梯 54 4-2 孤立波通過單潛堤之流場特性 61 4-2-1 波形變化 62 4-2-2 流場變化 63 4-2-3 紊流能量收支 67 4-2-4 渦流量 72 4-2-5 孤立波通過潛堤之壓力阻力分析 75 第五章 週期波與雙列潛堤互制分析 76 5-1 數值模式驗證 76 5-1-1 數值驗證 –週期波之層流流場 77 5-1-2 數值驗證 – 週期波通過單一潛堤之驗證 78 5-1-3 數值驗證 – 週期波通過雙列潛堤之驗證 83 5-2 波浪通過雙列潛堤之流場特性 86 5-2-1 流場變化 87 5-2-2 渦度 103 5-2-3 流線變化 113 5-2-4 紊流動能 122 5-2-5 波浪變形 132 5-2-6 流場物理量最大值分佈 147 5-2-7 水粒子軌跡 154 第六章 波浪通過人工沙漣底床之布拉格反射現象 156 6-1 波形變化 156 6-2 空間上動能、位能變化 162 6-3 流場變化 163 第七章 結論與建議 173 7-1 結論 173 7-2 建議 175 參考文獻 176 附錄 A 雷諾方程式推導過程 188 附錄 B 表 2-2 控制方程式中各變數對應之擴散係數與源項關係之推導過程 191 附錄 C 紊流動能 k 之傳輸方程式之推導 194 附錄 D 紊流能量消散率 ε 之傳輸方程式之推導 198 附錄 E 自由液面動力邊界條件 202 附錄 F 速度與壓力耦合技巧 204 附錄 G 自由表面處理方法 207 附錄 H 四支波高計分離法求反射率 211 謝誌 217

    1. Alfrink, B. J. and Rodi W., “Two-equation turbulence model for flow in trenches ” Journal Hydr. Engrg., ASCE, Vol. 109, pp. 941-958 (1983).
    2. Amsdon, A. A. and Harlow F. H., The SMAC method: a numerical technique for calculation incompressible fluid flows, Los Alamos Scientific Laboratory, Report LA-4370 (1971).
    3. Arai, M., Paul U. K., Cheng L. Y., and Inoue Y., “A technique for open boundary treatment in numerical wave tanks, ” Journal of the Society of Naval Architects of Japan, pp. 45-50 (1993).
    4. Beji, S., Ohyama T., Battjes J. A., and Nadaoka K., “Transformation of nonbreaking over a bar, ” 23rd Coastal Engineering Congress, ASCE, pp. 51-61 (1992).
    5. Brorsen, M. and Larsen J., “Source generation of nonlinear gravity waves with the boundary integral equation method,” Coastal Engineering, Vol. 11, pp. 93-113 (1987).
    6. Boussinesq, J., “Theorie des ondes et ramous qui se propagent le long dun canal rectangularire horizontal, en communiquant au liquide contenu dansce canal des vitesses sensiblement pareilles de la surface au,” Journal of Mathematical Pure et Application, 2nd Series, Vol. 17, pp. 55-108 (1872).
    7. Chan, R. K. C. and Street R. L., “A computer study of finite-amplitude water waves,” Journal of Computational Physics, Vol. 6, pp. 68-94. (1970).
    8. Chang, K. A., Hsu T. J., and Liu P. L. –F, “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle, Part I. Solitary waves,” Coastal Engineering, Vol. 44, pp. 13-36 (2001).
    9. Chen, C. J. and Chen H. C., The finite-analytic method, IIHR Report 232-IV, Iowa Institute of Hydraulic Research, The University of Iowa (1982).
    10. Chen C. J. and Jaw S. Y., Fundamentals of Turbulence Modeling, Taylor and Francis, Washington, D.C. (1998).
    11. Chorin, A. J., “A numerical method for solving incompressible viscous flow problems,” Journal of Computational Physics, Vol. 2, pp. 12-16, (1967).
    12. Clement, A., “Coupling of two absorbing boundary conditions for 2D time-domain simulation of free surface gravity waves,” Journal of Computational Physics, Vol. 126, pp. 139-151, (1996).
    13. Davies, A. G. and Heathershaw A. D., “Surface propagation over sinusoidally varying topography,” Journal of Fluid Mechanics, Vol. 144, pp. 419-446 (1984).
    14. Deardoff, J. W., “The use of subgrid transport equation in a three dimensional method of atmospheric turbulence”, Journal Fluid Engineering, ASME, Vol. 95, pp. 429 (1973).
    15. Dong, C. M. and Huang C. J., “Vortex generation in water waves propagating over a submerged rectangular dike”, 9th Int. Offshore and Polar Eng. Conf., Vol. 3, pp. 388-395 (1999).
    16. Dong, C. M., The development of a numerical wave tank of viscous fluid and its applications, Ph. D. Thesis, National Cheng Kung University, Tainan, Taiwan (2000).
    17. Driscoll, A. M., Dalrymple R. A., and Grill, S. T., “Harmonic generation and transmission past a submerged rectangular obstacle, ” 23rd Coastal Engineering Congress, ASCE, pp. 1142-1152 (1992).
    18. Goring, D. and Fredric Raichlen, “Propagation of long wave onto shelf,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 118, No. 1, pp. 43-61 (1990).
    19. Grilli, S. T., Losada M. A., and Martin F., “Shoaling of Solitary waves on plane beaches,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 120, No. 6, pp. 609-627 (1994).
    20. Grilli, S. T. and Horrillo J., “ Numerical generation and absorption of fully nonlinear periodic waves,” J. Eng. Mech., Vol. 123, pp. 1060-1069 (1997).
    21. Grue, J., “Nonlinear water waves at a submerged obstacle or bottom topography,” Journal of Fluid Mechanics, Vol. 244, pp. 455-476 (1992).
    22. Harlow, F. H. and Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Physics of Fluids, Vol. 8, pp. 2182-2189 (1965).
    23. Hirt, C. W., Amsden A. A., and Cook, J. L., “An arbitrary Lagrangian-Eulerian computing method for all flow speeds,” Journal of Computational Physics, Vol. 14, pp. 227-253 (1974).
    24. Hirt, C. W., Nichols B. D., and Romero N. C., 1975. SOLA-a numerical solution algorithm for transient fluid flows. Los Alamos Scientific Laboratory, LA-5852, pp. 1-50.
    25. Hirt, C. W. and Nichols B. D., “ Volume of fluid method for the dynamics of free boundaries,” Journal of Computational Physics, Vol. 39, pp. 201-225 (1981).
    26. Hsu, T. W. and Jan C. D., “Calibration of Businger-Arya type of eddy viscosity model’s parameters,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 125, No. 5, pp. 281-284 (1998).
    27. Hsu, T. W., Tsai L. H., and Huang Y. T., “Bragg scattering of water waves by multiply composite artificial bars,” Coastal Engineering Journal, Vol. 45, No. 2, pp. 235-253 (2003).
    28. Hsu, T. W., Hsieh C. M., and R. Hwung “Using RANS to simulate vortex generation and dissipation around submerged breakwaters,” A paper submitted to Coastal Engineering (in press) (2004).
    29. Huang, C. J. and Dong C. M., “Wave deformation and vortex generation in water waves propagating over a submerged dike,” Coastal Engineering, Vol. 37, pp. 123-148 (1999).
    30. Huang, C. J. and Dong C. M., “On the interaction of a solitary wave and a submerged dike,” Coastal Engineering, Vol. 43, pp. 265-286 (2001).
    31. Huang, C. J. and Dong C. M., “Propagation of water waves over rigid rippled beds,” J. Waterway, Port, Coastal, and Ocean Eng., ASCE, Vol. 128, pp. 190-201 (2002).
    32. Hughes, S. A., Physical Models and Laboratory Techniques in Coastal Engineering, (Chap. 7: Laboratory wave generation). World Scientific Publishing Co. Pte. Ltd., Singapore (1993).
    33. Hwang, R. R. and Sue Y. C., “Numerical simulation on nonlinear interaction of water waves with submerged obstacles,” Proc. Flow Modeling and Turbulence Measurements VII, Taiwan, ASCE, pp. 545-554 (1998).
    34. Hwung, H. H., and Hwang K. S., ‘‘Flow structures over a wavy boundary in wave motion,’’ Proc., 9th Symp. on Turbulent Shear Flows, Kyoto, pp. 306.1–306.4 (1993).
    35. Ishida, A. and Takahashi H., “Numerical analysis of shallow water wave deformation in a constant depth region,” Coastal Engineering in Japan, Vol. 24, pp. 1-18 (1981).
    36. Justesen, P. “Prediction of turbulent oscillatory flow over rough beds,” Coastal Engineering in Japan, Vol. 12, pp. 257-284 (1988).
    37. Keulegan, G. H., “Gradual damping of solitary waves,” J. Res. of the National Bureau of Standards, Vol 40, pp. 478-498 (1948).
    38. Kirby, J. T., “A note on linear surface wave-current interaction over slowly varying topography,” Journal Geophys. Res., Vol. 89, pp. 745-747 (1984).
    39. Knott, G. F. and Mackley M. R., “On eddy motion near plates and ducts induced by water waves and periodic flows,” Phil. Trans. Roy. Soc. Lond. A294, pp. 559-623 (1980).
    40. Lamb, H., 1932. Hydrodynamics, 6th edition, Cambridge University Press.
    41. Larsen, J. and Dancy H., “Open boundaries in short-wave simulation - a new approach,” Coastal Engineering, Vol. 7, pp. 285-297 (1983).
    42. Launder, B. E. and Spalding D. B., “The numerical computation of turbulent flows,” Comp. Meth. Appl. Mech. Eng., Vol. 3, pp. 269-289 (1974).
    43. Launder, B. E., “Second-Moment closure and its use in modeling turbulent industrial,” Int. J. Numer. Methods in Fluids, Vol. 9, pp. 963-985 (1989).
    44. Lee, J. J., Skjelbreia E., and Raichlen F., “Measurement of velocities in solitary waves,” J. Waterway, Port, Coastal, and Ocean Eng., ASCE, Vol. 108, pp. 200-218 (1982).
    45. Lemos, C. M., Wave breaking, Springer-Verlag, (1992a).
    46. Lemos, C. M., “A simple numerical technique for turbulent flow with free surface,” International Journal for Numerical Methods in Fluids, Vol. 15, pp. 127-146 (1992b).
    47. Leonard, A., “ Energy cascade in large eddy simulation of turbulent flow,” Adv. Geophys., Vol. 68 A , pp. 237 (1974).
    48. Lin, P., Numerical modeling of breaking waves. Ph.D. thesis, Department of Civil and Environmental Engineering, Cornell University (1998).
    49. Lin, P., “A numerical study of solitary wave interaction with rectangular obstacles,” Coastal Engineering, Vol. 51, pp. 35-51 (2004).
    50. Liu, P. L. -F. and Cheng Y., “A numerical study of the evolution of a solitary wave over a shelf,” Physics of Fluids, Vol. 13 pp. 1660-1667 (2001).
    51. Lo, D. C. and Young D. L., “Arbitrary Lagrangian–Eulerian .finite element analysis of free surface flow using a velocity–vorticity formulation,” Journal of Computational Physics, Vol. 195, pp. 175-201 (2004).
    52. Losada, M., Vidal A. C., and Medina R., “Experimental study of the evolution of a solitary wave at an abrupt junction,” Journal Geophys. Res., No. 94, pp. 557-566 (1989).
    53. Losada, I. J., Losada M. A., and Martin, F. L., “Experimental study of wave-induced flow in a porous structure,” Coastal Engineering, Vol. 26, pp. 77-98 (1995).
    54. Losada, I. J., Patterson M. D., and Losada M. A., “Harmonic generation past a submerged porous step,” Coastal Engineering, Vol. 31, pp.281-304 (1997).
    55. Lu, Q. Q., “Two-dimensional transmission and reflection of a Solitary wave,” Int. J. Numer. Methods in Fluids, Vol. 13, pp. 1055-1070 (1991).
    56. Madsen, O. S. and Mei C. C., “The transformation of a solitary wave over an uneven bottom,” Journal of Fluid Mechanics, Vol. 39, pp. 781-791 (1969).
    57. Mase, H., Takeba K., and Oki S., ”Wave equation over permeable rippled bed and analysis of Bragg scattering of surface gravity waves,” Journal of Hydraulic Research, ASCE, Vol. 33 (6), pp. 789-812 (1995).
    58. Massel, S. R., “Harmonic generation by waves propagating over a submerged step,” Coastal Engineering, Vol. 7, pp. 357-380 (1983).
    59. McCowan, J., “On the Solitary wave,” London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Ser. 5, 32, pp. 45-58 (1891).
    60. Mei, C. C. and Black J. L., “Scattering of surface waves by rectangular obstacles in waters of finite depth,” Journal of Fluid Mechanics, Vol. 38, pp. 499-511 (1969).
    61. Mei, C. C., The applied dynamics of ocean surface waves, Wiley, New York, pp. 564, (1983).
    62. Mei, C. C., “Resonant reflection of surface waves by periodic sand-bars,” Journal of Fluid Mechanics, Vol. 152, pp. 315-335 (1985).
    63. Milgram, J. H., “Active water-wave absorbers,” Journal of Fluid Mechanics, Vol. 43, pp. 845-859 (1970).
    64. Miles, J. W., “Oblique surface-wave diffraction by a cylindrical obstacle,” Dynamics of Atmospheres and Oceans, Vol. 6, pp. 121-123 (1981).
    65. Miyata, H., “Finite-difference simulation of breaking waves,” Journal of Computational Physics, Vol. 65, pp. 179-214 (1986).
    66. Naot, D. and Rodi W., “Calculation of secondary current in channel flow over smooth and rough bed,” J. Hydr. Div. ASCE, Vol. 108, pp. 948-968 (1982).
    67. Newman, J. N., “Propagation of water waves past long two dimensional obstacles,” Journal of Fluid Mechanics, Vol. 23, pp. 23-29 (1965).
    68. Nichols, B. D. and Hirt C. W., “Numerical calculation of wave forces on structures,” Proceedings of 13th International Coastal Engineering Conference, Venice, ASCE, pp. 2254-2270 (1976).
    69. Noh, W. F., “CEL: A time-dependent, two space dimensional, coupled Eulerian-Lagrange code,” Methods in Computational Physics, Vol. 3, pp. 117-179 (1964).
    70. Ohyama, T. and Nadaoka K., “Development of a numerical wave tank for analysis of nonlinear and irregular wave field,” Fluid Dynamics Research, Vol. 8, pp. 231-251, (1991).
    71. Ohyama, T. and Nadaoka K., “Modeling the transformation of nonlinear waves passing over a submerged dike,” Proceedings of 23th International Coastal Engineering Conference, Venice, ASCE, pp. 526-539 (1992).
    72. Ohyama, T. and Nadaoka K., “Transformation of a nonlinear waves train passing over a submerged shelf without breaking,” Coastal Engineering, Vol. 24, pp. 1-12 (1994).
    73. Orlanski, I., “A simple boundary condition for unbounded hyperbolic flows,” Journal of Computational Physics, Vol. 21, pp 251-269 (1976).
    74. Osher, S. and Sethian J. A., “ A fonts propagating with curvature-dependents speed: algorithms based on Hamiltion-Jacobi formulation,” Journal of Computational Physic, Vol. 79, pp 12-49 (1988).
    75. Patankar, S. V. and Splading D. B. Heat and mass transfer in boundary layers, 2d ed., Intertext, London (1970).
    76. Patankar, S. V., Numerical heat transfer and fluid flow, Hemisphere, Washington, D.C. (1980).
    77. Prandtl, L., Essentials fluid dynamics, Hafner Publishing Co., Inc., New York, Article IIb (1952).
    78. Petti, M., Quinn P. A., Liberatore G., and Easson W. J., “Wave velocity field measurement over a submerged breakwater,” Proceedings of Twentytfourth International Coastal Engineering Conference, Japan, ASCE, pp. 525-539 (1994).
    79. Rayleigh, L. “On waves,” Phil. Mag., Vol. 1, pp. 257-279 (1876).
    80. Rey, V., Belzons M., and Guazzelli, E., “Propagation of surface gravity waves over a rectangular submerged bar,” Journal of Fluid Mechanics, Vol. 235, pp. 453-479 (1992).
    81. Rodi, W., Turbulence models and their application in hydraulics, Delft, Neth: Int. Assoc. Hydraul. Res. (1980).
    82. Seabra-Santos, F. J., Renouard D. P., and Temperville A. M., “Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle,” Journal of Fluid Mechanics., Vol. 176, pp. 117-134, (1987).
    83. Smagorinsky, J., “General circulation experiments with the primitive equations. I. The basic experiment,” Mon. Wea Rev., Vol. 91, pp. 99-104, (1963).
    84. Sommerfeld, A., Mechanics of deformation bodies, Vol. 2 of Lectures on Theoretical Physics, Academic Press, New York, (1964).
    85. Sussman, M., Smereka P., and Osher S., “A level set approach for computing solutions to incompressible two-phase flow,” Journal of Computational Physics, Vol. 114, pp. 146-159 (1994).
    86. Tang, C. J. and Chang J. H., “Flow separation during solitary wave passing over submerged obstacle,” Journal Hydraulic Eng., ASCE, Vol. 124, No. 7, pp. 742-749 (1998).
    87. Ting, F. C. K. and Kim Y. K., “Vortex generation in water waves propagation over a submerged obstacle,” Coastal Engineering, Vol. 24, pp. 23-49 (1994).
    88. Tome, M. F. and McKee S., “GENSMAC: A computational marker-and-cell method for free surface flows in general domains,” Journal of Computational Physics, Vol. 110, pp. 171-186 (1994).
    89. Wiegel, R. L., Oceanographical engineering, Prentice-Hall, Inc., New York (1964).
    90. 陳陽益、湯麟武,「波床底床上規則前進重力波之解析」,第十二屆海洋工程研討會論文集,台灣台北,第 205-219 頁 (1990)。
    91. 陳陽益,「自由表面規則前進重力波傳遞於波形底床上共振現象」,第十五屆全國力學會議論文集,台灣台南,第 289-296 頁 (1991)。
    92. 吳盈志,「波浪通過潛堤之渦流行為」,國立成功大學水利暨海洋工程研究所碩士論文 (1997)。
    93. 饒國清,「波浪作用人工底床之流場可視化」,國立成功大學水利暨海洋工程研究所碩士論文 (1997)。
    94. 張憲國、許泰文、李逸信,「波浪通過人工沙洲之試驗研究」,第十九屆海洋工程研討會論文集,台灣台中,第 242-249 頁 (1997)。
    95. 張志華,「孤立波與結構物在黏性流體中互制作用之研究」,國立成功大學水利暨海洋工程研究所博士論文 (1997)。
    96. 蘇怡中,「自由液面表面波流場之數值方法發展與應用」,國立台灣大學造船及海洋工程學研究所博士論文 (1998)。
    97. 歐善惠,許泰文,游國周,廖建明,「應用 FLDV 量測波浪通過潛堤之渦流行為」,第二十屆海洋工程研討會論文集,基隆,第 249-256 頁 (1998)。
    98. 岳景雲、曹登皓、陳炳奇,「波浪斜向入射正方形複列潛堤反射率之研究」,第二十屆海洋工程研討會論文集,第 265-272 頁 (1998)。
    99. 盧建林,「以 FLDV 量測波浪作用下潛堤附近之渦流特性」,國立成功大學水利暨海洋工程研究所碩士論文 (1999)。
    100. 許泰文、謝志敏、辛志勇、黃榮鑑,「應用數值模擬波浪通過序列潛堤之渦流特性」,第二十四屆全國力學會議,中壢,第 B249-B256 頁 (2000)。
    101. 黃清哲、董志明、張興漢,「數值黏性造波水槽之發展及應用」,2001 海洋數值模式研討會,台北,第 6-1 - 6-22 頁 (2001)。
    102. 許泰文,彭逸凡,謝志敏,楊文昌,黃榮鑑,「應用數值模擬波浪通過不透水雙列潛堤之渦流特性」,第二十六屆全國力學會議論文摘要集,雲林虎尾,第 B54 頁 (2002)。
    103. 林俊遠、黃清哲,「Separation of the incident and reflected higher harmonic waves using four wave gauges」,第二十四屆海洋工程研討會論文集,第 190-197 頁 (2002)。
    104. 許泰文,楊炳達,周世恩,曾以帆,「Boussinesq 方程式應用於波浪不拉格反射之研究」,海洋工程刊,第 3 卷,第 2 期,第 1-24 頁 (2004)。

    下載圖示 校內:2009-09-06公開
    校外:2009-09-06公開
    QR CODE