簡易檢索 / 詳目顯示

研究生: 廖婉君
Liao, Wan-Chun
論文名稱: 清醒大白鼠對調幅聲誘發電位反應之特性
Auditory cortical evoked response to amplitude modulations in conscious rats
指導教授: 潘偉豐
Poon, Wei-Feng
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 97
中文關鍵詞: 調幅聲聽覺皮層事件相關電位事件相關頻譜擾動伽馬波段反應清醒大鼠
外文關鍵詞: amplitude modulation, auditory cortex, evoked potential, event-related spectral perturbation, gamma band activities, conscious rat
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 調幅聲為日常生活所需之溝通訊號中的重要基石之一,而這溝通訊號也包括了語言。聽覺皮層是處理調幅聲的重要中心,然而皮層中樞
    如何處理調幅聲的細節(包括了皮質大腦對調頻聲音反應的閥值、處理調頻聲所需之潛伏期反應時間、皮質對調頻聲反應的變化度、頻率跟隨反應以及其對頻譜反應的特性等)目前仍尚未非常清楚。在此實驗中,我們使用一種新型的和正弦調幅音(chirp tone with sinusoidal amplitude modulation)刺激清醒大鼠的皮層誘發電位並藉由事先埋入的電極記錄。事件相關電位(ERP)和事件相關頻譜擾動(ERSP)為主要分析皮層反應的依據。相較於瞬時的聲音(click),調幅聲所誘發的頻率跟隨反應顯示了在調幅頻率約為60 Hz時有最佳的反應,且有比較高的反應閥值(比click高出約40 dB);在伽馬波段的反應也主要集中於200 Hz以下,且有較長的潛伏期反應時間(約23 ms)。藉由調幅聲所誘發的反應時間長於文獻報告中所指出的皮層對瞬時聲音反應時間之結果,顯示了我們所記錄到的調幅聲誘發反應發生的位置於聽覺皮層而非皮層下起源。另外,適應性濾波的應用可幫忙檢視單一試驗反應間的變異性,結果顯示了相當大的變異性存在於單一試驗反應。值得注意的是,相較於事件相關電位,事件相關頻譜擾動對於調幅聲載波頻率有較佳的選擇性,暗示了記錄電極位於較敏感的頻率位置附近(tonotopic map)。以上的結果顯示了伽馬波段的反應對於檢視聽覺皮層如何處理調幅聲是一個好的度量方法。

    Amplitude modulation (AM) is an important building block of communication signals, including speech. Auditory cortex is an important center for processing AM sounds. But details of its cortical processing (e.g., response threshold, latency and variability, frequency following and spectral tuning) are still unclear. In this study, the cortical evoked responses to a novel chirp tone with sinusoidal AM were analyzed, using intracranial recordings in the conscious rats. The cortical responses analyzed included the event-related potential (ERP) that is time-locked to the stimulus, and the event-related spectral perturbation (ERSP) that may or may not be time-locked to the stimulus. Compared with the response to acoustic transient (click), the frequency following response to AM showed a peak around modulation rate of 60 Hz, had higher thresholds (~40 dB higher), showed primarily lower gamma band activities (<200 Hz), longer response latencies (~23 ms). These characteristics of the AM response are supportive of its cortical rather than sub-cortical origin, with underlying neural circuits processing modulations over a time period longer than that of the acoustic transients. Great inter-trial variability in response was observed after adaptive filtering of single trial responses. Notably, response selectivity to carrier frequency of the AM tone was found with ERSP (but not ERP), suggesting that the recording location was near the most sensitive frequency region on the tonotopic map. Results supported that gamma band response is a good metric to characterize cortical processing of AM signals.

    Abstract………………………………………………………………………..I Chinese Abstract……………………………………………………………..III Acknowledgment……………………………………………………………..V Contents……………………………………………………………………...VI List of figures……………………………………………………………...VIII 1. Introduction………………………………………………………………1 1.1 Auditory cortex………………………………………………………..1 1.1.1 Rat auditory cortex……………………………………………....2 1.1.2 Primary and non-primary auditory fields………………………..2 1.2 Amplitude modulation (AM)………………………………………….3 1.2.1 Importnce of AM………………………………………………..3 1.2.2 Neural sensitivity to AM………………………………………...4 1.2.2.1 Single cell responses……………………………………...4 1.2.2.2 Functional imaging studies……………………………….4 1.2.2.3 Event-related potential (ERP) and gamma band response to AM……………………………………………………..5 1.3 Aim of study…………………………………………………………...7 2. Mterials and methods…………………………………………………….8 2.1 Animal…………………………………………………………………8 2.2 Recording electrodes…………………………………………………..8 2.3 Neurosurgery…………………………………………………………..8 2.4 Experimental paradigm………………………………………………..9 2.5 Acoustic stimulation………………………………………………….10 2.6 Electrophysiological recordings……………………………………...11 2.7 Data analysis………………………………………………………….11 2.7.1 AEP data pre-processing……………………………………….11 2.7.2 AEP response magnitude determined by ER intergral…………12 2.7.3 Gamma band responses extracted by time-frequency analysis..13 2.7.4 Response variability assessed by the adaptive filter…………...13 2.7.5 Statistical analysis……………………………………………...14 3. Results…………………………………………………………………...15 3.1 Response to acoustic transient (click)………………………………..15 3.1.1 ERP, ERSP and ITC……………………………………………15 3.1.2 Response level functions………………………………………16 3.2 Response to tone bursts………………………………………………17 3.2.1 ERP, ERSP and ITC……………………………………………17 3.3 Optimizing stimulus parameters of the AM sound…………………...17 3.3.1 Up/down chirp profile………………………………………….18 3.3.2 Inter-chirp interval……………………………………………..19 3.3.3 Chirp time profile………………………………………………19 3.3.4 Response level functions………………………………………19 3.3.5 AM envelop……………………………………………………20 3.4 Characteristics of the AM response…………………………………..20 3.4.1 transient and sustained responses……………………………...20 3.4.2 correlation between ERP nd ERSP of the sustained responses...21 3.4.3 ERP latency of the AM sustained response……………………22 3.4.4 Inter-trial variability of ERP…………………………………...24 3.5 Carrier frequency tuning of AM responses…………………………..25 4. Discussion………………………………………………………………..27 4.1 Spectral range of gamma band responses……………………………27 4.2 Frequency tuning of AM evoked responses………………………….27 4.3 AM response latency…………………………………………………30 4.4 Inter-trial variability of AM evoked responses……………………….31 5. Reference………………………………………………………………...33 6. Appendix………………………………………………………………...89

    Aiken SJ, Picton TW. Human cortical responses to the speech envelope. Ear Hear. 29: 139-157, 2008.

    Artieda J, Valencia M, Alegre M, Olaziregi O, Urrestarazu E, Iriarte J. Potentials evoked by chirp-modulated tones: a new technique to evaluate oscillatory activity in the auditory pathway. Clin. Neurophysiol. 115: 699-709, 2004.

    Barth DS, Di S.Three-dimensional analysis of auditory-evoked potentials in rat neocortex. J. Neurophysiol. 64: 1527-1536, 1990.

    Brosch M, Budinger E, Scheich H. Stimulus-related gamma oscillations in primate auditory cortex. J. Neurophysiol. 87: 2715-2725, 2002.

    Brugge JF, Nourski KV, Oya H, Reale RA, Kawasaki H, Steinschneider M, Howard MA III. Coding of repetitive transients by auditory cortex on Heschl's gyrus. J. Neurophysiol. 102: 2358-2374, 2009.

    Burkard R, Trautwein P, Salvi R. The effects of click level, click rate, and level of background masking noise on the inferior colliculus potential (ICP) in the normal and carboplatin-treated chinchilla. J. Acoust. Soc. Am. 102: 3620-7, 1997.

    Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science 304: 1926-1929, 2004.

    Buzsáki G. The structure of consciousness. Nature 446: 267, 2007.

    Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313: 1626-1628, 2006.

    Chang TR, Chung PC, Chiu TW, Poon PW. A new method for adjusting neural response jitter in the STRF obtained by spike-trigger averaging. Biosystems 79: 213-22, 2005.

    Chiu TW, Liu YD, Poon PW. Transient frequency and intensity sensitivities of central auditory neurons determined with sweep tone. Chin J Physiol. 41:133-138, 1998.

    Cooke JE, Zhang H, Kelly JB. Detection of sinusoidal amplitude modulated sounds: deficits after bilateral lesions of auditory cortex in the rat. Hear. Res. 231: 90-99, 2007.

    Crone NE, Sinai A, Korzeniewska A. High-frequency gamma oscillations and human brain mapping with electrocorticography. Prog. Brain Res. 159: 275-295, 2006.

    de Jong FI, Kingma H, Wirtz P, vd Berge H, Marres EH. Indications of a differentiated regulation of sound transmission by the middle ear muscles of the rat. Am. J. Otol. 9: 70-5, 1988.

    Devanne H, Cohen LG, Kouchtir-Devanne N, Capaday C. Integrated motor cortical control of task-related muscles during pointing in humans. J. Neurophysiol. 87: 3006-3017, 2002.

    Ding N and Simon JZ. Neural representations of complex temporal modulations in the human auditory cortex. J. Neurophysiol. 102: 2731-43, 2009.

    Dorman MF, Loizou PC, Rainey D. Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs. J. Acoust. Soc. Am. 102: 2403-2411, 1997.

    Draganova R, Ross B, Borgmann C, Pantev C. Auditory cortical response patterns to multiple rhythms of AM sound. Ear Hear. 23: 254-65, 2002.

    Dreschler WA, Leeuw AR. Speech reception in reverberation related to temporal resolution. J. Speech. Hear. Res. 33: 181-7, 1990.

    Dugué P, Le Bouquin-Jeannès R, Edeline JM, Faucon G. A physiologically based model for temporal envelope encoding in human primary auditory cortex. Hear. Res. 268: 133-144, 2010.

    Edwards, M. Soltani, L.Y. Deouell, M.S. Berger and R.T. Knight. High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J. Neurophysiol. 94: 4269-4280, 2005.

    Eggermont JJ. Context dependence of spectro-temporal receptive fields with implications for neural coding. Hear. Res. 271: 123-132, 2011.

    Eggermont JJ. Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms. J. Neurophysiol. 87: 305-321, 2002.

    Eggermont JJ. Between sound and perception: reviewing the search for a neural code. Hear. Res. 157: 1-42, 2001.

    Eggermont JJ. Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. J. Neurophysiol. 80: 2743-2764, 1998.

    Eggermont JJ. Temporal modulation transfer functions for AM and FM stimuli in cat auditory cortex. Effects of carrier type, modulating waveform and intensity. Hear. Res. 74: 51-66, 1994.

    Elliott TM, Theunissen FE. The modulation transfer function for speech intelligibility. PLoS. Comput. Biol. 5: e1000302, 2009.

    Franowicz MN, Barth DS. Comparison of evoked potentials and high-frequency (gamma-band) oscillating potentials in rat auditory cortex. J. Neurophysiol. 74: 96-112, 1995.

    Frisina RD. Subcortical neural coding mechanisms for auditory temporal processing. Hear. Res. 158: 1-27, 2001.

    Gaese BH, Ostwald J. Temporal coding of amplitude and frequency modulation in the rat auditory cortex. Eur. J. Neurosci. 7: 438-450, 1995.

    Gaona CM, Sharma M, Freudenburg ZV, Breshears JD, Bundy DT, Roland J, Barbour DL, Schalk G, Leuthardt EC. Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex. J. Neurosci. 31: 2091-2100, 2011.

    Gelli F, Del-Santo F, Mazzocchio R, Rossi A. Force estimation rocessing as a function of the input-output relationship of the corticospinal pathway in humans. Eur. J. Neurosci. 22: 1127-1134, 2005.

    Giraud AL, Lorenzi C, Ashburner J, Wable J, Johnsrude I, Frackowiak R, Kleinschmidt A. Representation of the temporal envelope of sounds in the human brain. J. Neurophysiol. 84: 1588-1598, 2000

    Gockel H, Carlyon RP, Deeks JM. Effect of modulator asynchrony of sinusoidal and noise modulators on frequency and amplitude modulation detection interference. J. Acoust. Soc. Am. 112: 2975-2984, 2002.

    Gourévitch B, Le Bouquin Jeannès R, Faucon G, Liégeois-Chauvel C. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas. Hear. Res. 237: 1-18, 2008.

    Gourévitch B, Eggermont JJ. Maximum decoding abilities of temporal patterns and synchronized firings: application to auditory neurons responding to click trains and amplitude modulated white noise. J. Comput. Neurosci. 29: 253-277, 2010.

    Griffiths TD. Human complex sound analysis. Clin. Sci. (Lond) 96: 231-234, 1999.

    Griffiths TD, Büchel C, Frackowiak RS, Patterson RD. Analysis of temporal structure in sound by the human brain. Nat. Neurosci. 1: 422-427, 1998.

    Griffiths TD, Rees G, Rees A, Green GG, Witton C, Rowe D, Büchel C, Turner R, Frackowiak RS. Right parietal cortex is involved in the perception of sound movement in humans. Nat. Neurosci. 1: 74-79, 1998.

    Hackett TA . Organization and correspondence of the auditory cortex of humans and nonhuman primates. Neurobiology, Academic Press, 109-119, 2007.

    Harris KD, Bartho P, Chadderton P, Curto C, de la Rocha J, Hollender L, Itskov V, Luczak A, Marguet SL, Renart A, Sakata S. How do neurons work together? Lessons from auditory cortex. Hear. Res. 271: 37-53, 2011.

    Hart HC, Palmer AR, Hall DA. Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cereb. Cortex 13: 773-781, 2003.

    Hsieh IH, Saberi K. Detection of sinusoidal amplitude modulation in logarithmic frequency sweeps across wide regions of the spectrum. Hear. Res. 262: 9-18, 2010.

    Hughes JR. Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior. Epilepsy Behav. 13: 25-31, 2008.

    Jia X,Smith MA, Kohn A. Stimulus Selectivity and Spatial Coherence of Gamma Components of the Local Field Potential. J. Neurosci.31: 9390-9403, 2011.

    John MS, Dimitrijevic A, van Roon P, Picton TW. Multiple auditory steady-state responses to AM and FM stimuli. Audiol. Neurootol. 6: 12-27, 2001.

    Jones MS, MacDonald KD, Choi B, Dudek FE, Barth DS. Intracellular Correlates of Fast (>200 Hz) Electrical Oscillations in Rat Somatosensory Cortex. J Neurophysiol. 84: 1505-1518, 2000.

    Joris PX, Schreiner CE, Rees A. Neural processing of amplitude-modulated sounds. Physiol. Rev. 84: 541-577, 2004.

    Kaiser J, Lutzenberger W. Human gamma-band activity: a window to cognitive processing. Neuroreport 16: 207-211, 2005.

    Kaiser J, Lutzenberger W. Induced gamma-band activity and human brain function. Neuroscientist 9: 475-484, 2003.

    Kaiser J, Hertrich I, Ackermann H, Lutzenberger W. Gamma-band activity over early sensory areas predicts detection of changes in audiovisual speech stimuli. Neuroimage 30: 1376-1382, 2006.

    Kanwal JS, Rauschecker JP. Auditory cortex of bats and primates: managing species-specific calls for social communication. Front. Biosci. 12: 4621-4640, 2007.

    Kay, R.H. Hearing of modulation in sounds. Physiol. Rev. 62: 894-969, 1982.

    Kendrick KM, Zhan Y, Fischer H, Nicol AU, Zhang X, Feng J. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex. BMC Neurosci. 12: 55, 2011.

    Laguna P, Meste O, Poon PW, Caminal P, Rix H, Thakor NT. Adaptive filter for event-related bioelectric signals using an impulse correlated reference input: comparison with signal averaging technique. IEEE Trans. Biomed. Eng. 39: 1032-1044, 1992.

    Lippé S, Martinez-Montes E, Arcand C, Lassonde M. Electrophysiological study of auditory development. Neuroscience 164: 1108-1118, 2009.

    Lu T, Wang X. Information content of auditory cortical responses to time-varying acoustic stimuli. J. Neurophysiol. 91: 301-313, 2004.

    Luo H, Wang Y, Poeppel D, Simon JZ. Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence. J. Neurophysiol. 96: 2712-2723, 2006.

    MacDonald KD, Barth DS. High frequency (gamma-band) oscillating potentials in rat somatosensory and auditory cortex. Brain Res. 694: 1-12, 1995.

    Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroenceph. Clin. Neurophysiol. 86: 283-93, 1993.

    Malmierca MS. The structure and physiology of the rat auditory system: an overview. Int. Rev. Neurobiol. 56: 147-211, 2003.

    Malone BJ, Scott BH, Semple MN. Dynamic amplitude coding in the auditory cortex of awake rhesus macaques. J. Neurophysiol. 98: 1451-1474, 2007.

    Malone BJ, Scott BH, Semple MN. Temporal codes for amplitude contrast in auditory cortex. J. Neurosci. 30: 767-84, 2010.

    Marguet SL, Harris KD. State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex. J. Neurosci. 31: 6414-6420, 2011.

    Medvedev AV, Kanwal JS. Communication call-evoked gamma-band activity in the auditory cortex of awake bats is modified by complex acoustic features. Brain Res. 1188: 76-86, 2008.

    Meeren HK, van Cappellen van Walsum AM, van Luijtelaar EL, Coenen AM. Auditory evoked potentials from auditory cortex, medial geniculate nucleus, and inferior colliculus during sleep-wake states and spike-wave discharges in the WAG/Rij rat. Brain Res. 898: 321-331, 2001.

    Miller CT, Dimauro A, Pistorio A, Hendry S, Wang X. Vocalization Induced CFos Expression in Marmoset Cortex. Front. Integr. Neurosci. 4: 128, 2010.

    Miller KJ, Hermes D, Honey CJ, Sharma M, Rao RP, den Nijs M, Fetz EE, Sejnowski TJ, Hebb AO, Ojemann JG, Makeig S, Leuthardt EC. Dynamic modulation of local population activity by rhythm phase in human occipital cortex during a visual search task. Front. Hum. Neurosci. 4: 197, 2010.

    Miyazato H, Skinner RD, Reese NB, Boop FA, Garcia-Rill E. A middle-latency auditory-evoked potential in the rat. Brain Res. Bull. 37: 247-255, 1995.

    Mureşan RC, Jurjuţ OF, Moca VV, Singer W, Nikolić D. The oscillation score: an efficient method for estimating oscillation strength in neuronal activity. J. Neurophysiol. 99: 1333-1353, 2008.

    Nelken I. Processing of complex sounds in the auditory system. Curr. Opin. Neurobiol. 18: 413-417, 2008.

    Nie K, Barco A, Zeng FG. Spectral and temporal cues in cochlear implant speech perception. Ear Hear. 27: 208-217, 2006.

    Ohl FW, Scheich H, Freeman WJ. Topographic analysis of epidural pure-tone-evoked potentials in gerbil auditory cortex. J. Neurophysiol. 83: 3123-3132, 2000.

    Onton J, Makeig S. Information-based modeling of event-related brain dynamics. Prog. Brain Res. 159: 99-120, 2006.

    Orduña I, Mercado E 3rd, Gluck MA, Merzenich MM. Cortical responses in rats predict perceptual sensitivities to complex sounds. Behav. Neurosci. 119: 256-264, 2005.

    Pandya PK, Rathbun DL, Moucha R, Engineer ND, Kilgard MP. Spectral and temporal processing in rat posterior auditory cortex. Cereb. Cortex. 18: 301-314, 2008.

    Paxinos G, Watson C. The rat brain in stereotaxic coordinates, Academic Press, New York, 1998.

    Pérez-Alcázar M, Nicolás MJ, Valencia M, Alegre M, Iriarte J, Artieda J. Chirp-evoked potentials in the awake and anesthetized rat. A procedure to assess changes in cortical oscillatory activity. Exp. Neurol. 210: 144-153, 2008.

    Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110: 1842-1857, 1999.

    Philibert B, Laudanski J, Edeline JM. Auditory thalamus responses to guinea-pig vocalizations: a comparison between rat and guinea-pig. Hear. Res. 209: 97-103, 2005.

    Polley DB, Read HL, Storace DA, Merzenich MM. Multiparametric auditory receptive field organization across five cortical fields in the albino rat. J. Neurophysiol. 97: 3621-3638, 2007.

    Poon PW, Chiu TW. Similarities of FM and AM receptive space of single units at the auditory midbrain. Biosystems 58: 229-237, 2000.

    Qui W, Fung KS, Chan FHY, Lam FK, Poon PW, Hamernik RP. Adaptive filtering of evoked potential with radial-basis-function neural network prefilter. IEEE. Trans. Biomed. Eng. 49: 255-232, 2002.

    Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS. Neural correlates of high-gamma oscillations (60-200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci. 28: 11526-11536, 2008.

    Recanzone GH, Engle JR, Juarez-Salinas DL. Spatial and temporal processing of single auditory cortical neurons and populations of neurons in the macaque monkey. Hear. Res. 271: 115-122, 2011.

    Reimer A, Hubka P, Engel AK, Kral A. Fast propagating waves within the rodent auditory cortex. Cereb. Cortex. 21: 166-177, 2011.

    Rees A, Palmer AR. The Oxford Handbook of Auditory Science: The Auditory Brain. Oxford University Press. NY. pp.9-33, 126-145, 2010.

    Riquelme R, Kuwada S, Filipovic B, Hartung K, Leonard G. Optimizing the stimuli to evoke the amplitude modulation following response (AMFR) in neonates. Ear Hear. 27: 104-119, 2006.

    Roach BJ, Mathalon DH. Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr. Bull. 34: 907-926, 2008.

    Rutkowski RG, Miasnikov AA, Weinberger NM. Characterisation of multiple physiological fields within the anatomical core of rat auditory cortex. Hear. Res. 181: 116-130, 2003.

    Schadow J, Lenz D, Dettler N, Fründ I, Herrmann CS. Early gamma-band responses reflect anticipatory top-down modulation in the auditory cortex. Neuroimage 47: 651-658, 2009.

    Schiff N, Ribary U, Plum F, Llinás R. Words without mind. J. Cogn. Neurosci. 11: 650-656, 1999.

    Schneider P, Sluming V, Roberts N, Bleeck S, Rupp A. Structural, functional, and perceptual differences in Heschl's gyrus and musical instrument preference. Ann. N.Y. Acad. Sci. 1060: 387-394, 2005.

    Schoonhoven R, Boden CJ, Verbunt JP, de Munck JC. A whole head MEG study of the amplitude-modulation-following response: phase coherence, group delay and dipole source analysis. Clin. Neurophysiol. 114: 2096-2106, 2003.

    Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science. 270: 303-304, 1995.

    Shannon RV. The relative importance of amplitude, temporal, and spectral cues for cochlear implant processor design. Am. J. Audiol. 11: 124-127, 2002.

    Shaw NA. Central auditory conduction time in the rat. Exp. Brain Res. 79: 217-220, 1990.

    Shaw, NA. Auditory evoked potentials recorded from different skull locations in the rat. Int. J. Neurosci. 70: 277-283, 1993.

    Shaw NA. The effects of low-pass filtering on the primary cortical auditory potential of the rat. J. Neurosci. Methods 59: 209-216, 1995.

    Shaw NA. The temporal relationship between the brainstem and primary cortical auditory evoked potentials. Prog. Neurobiol. 47: 95-103,1995.

    Shucard DW, Specht CM. Fast habituation of the long-latency auditory evoked potential in the awake albino rat. Electroencephalogr. Clin. Neurophysiol. 100: 78-84, 1996.

    Shucard DW, Santa Maria MP, Specht CM, Podkulski M. Single-trial latency variability of auditory evoked potentials may indicate immediate memory in the albino rat. Int. J. Psychophysiol. 47: 229-241, 2003.

    Simpson MI, Barnes GR, Johnson SR, Hillebrand A, Singh KD, Green GG. MEG evidence that the central auditory system simultaneously encodes multiple temporal cues. Eur. J. Neurosci. 30: 1183-1191, 2009.

    Smith JC, Marsh JT, Brown WS. Far-field recorded frequency-following responses: evidence for the locus of brainstem sources. Electroencephalogr. Clin. Neurophysiol. 39: 465-472, 1975.

    Snyder JS, Large EW. Gamma-band activity reflects the metric structure of rhythmic tone sequences. Brain Res. Cogn. Brain Res. 24: 117-126, 2005.

    Steinschneider M, Fishman YI, Arezzo JC. Spectrotemporal analysis of evoked and induced electroencephalographic responses in primary auditory cortex (A1) of the awake monkey. Cereb. Cortex 18: 610-625, 2008.

    Steinschneider M, Liégeois-Chauvel C, Brugge JF. Auditory evoked potentials and their utility in the assessment of complex sound processing. In The Auditory Cortex. Winer and Schreiner (eds). Springer, USA. pp 535-559, 2011.

    Sukov W, Barth DS. Three-dimensional analysis of spontaneous and thalamically evoked gamma oscillations in auditory cortex. J. Neurophysiol. 79: 2875-2884, 1998.

    Suta D, Popelár J, Syka J. Coding of communication calls in the subcortical and cortical structures of the auditory system. Physiol. Res. Suppl 3: S149-S159, 2008.

    Takahashi H, Nakao M, Kaga K. Multiple neural origins of early auditory evoked potential of rat. Neuroscience 148: 845-856, 2007.

    Trautner P, Rosburg T, Dietl T, Fell J, Korzyukov OA, Kurthen M, Schaller C, Elger CE, Boutros NN. Sensory gating of auditory evoked and induced gamma band activity in intracranial recordings. Neuroimage 32: 790-798, 2006.

    van den Berge H, Kingma H, Kluge C, Marres EH. Electrophysiological aspects of the middle ear muscle reflex in the rat: latency, rise time and effect on sound transmission. Hear. Res. 48: 209-219, 1990.

    Vanderwolf CH. Are neocortical gamma waves related to consciousness? Brain Res. 855: 217-224, 2000.

    Vianney-Rodrigues P, Iancu OD, Welsh JP. Gamma oscillations in the auditory cortex of awake rats. Eur. J. Neurosci. 33: 119-129, 2011.

    Wan H, Warburton EC, Kuśmierek P, Aggleton JP, Kowalska DM, Brown MW. Fos imaging reveals differential neuronal activation of areas of rat temporal cortex by novel and familiar sounds. Eur. J. Neurosci. 14: 118-124, 2001.

    Wang X. Neural coding strategies in auditory cortex. Hear. Res. 229: 81-93, 2007.

    Wang X, Lu T, Bendor D, Bartlett E. Neural coding of temporal information in auditory thalamus and cortex. Neuroscience 157: 484-494, 2008.

    Warrier C, Wong P, Penhune V, Zatorre R, Parrish T, Abrams D, Kraus N.
    Relating structure to function: Heschl's gyrus and acoustic processing. J. Neurosci. 29: 61-69, 2009.

    Wever EG, Vernon JA. The threshold sensitivity of the tympanic muscle reflexes. AMA Arch. Otolaryngol. 62: 204-213, 1955.

    Whitfield, I.C., Evans, E.F. Responses of auditory cortical neurons to stimuli of changing frequency. J. Neurophysiol. 28: 655-672, 1965.

    Zeng FG, Nie K, Stickney GS, Kong YY, Vongphoe M, Bhargave A, Wei C, Cao K. Speech recognition with amplitude and frequency modulations.
    Proc. Natl. Acad. Sci. USA 102: 2293-2298, 2005.

    Zhang LI, Bao S, Merzenich MM. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat. Neurosci. 4:1123-1130, 2001.

    Zhang LI, Bao S, Merzenich MM. Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proc. Natl. Acad. Sci USA 99: 2309-2314, 2002.

    Zhang Y, Han L, Xiao X, Hu B, Ruan H, Xiong Y. Effects of acoustic stimuli on neuronal activity in the auditory cortex of the rat. Physiol. Res. 2011 [Epub ahead of print].

    Zhou Y, Wang X. Cortical processing of dynamic sound envelope transitions. J. Neurosci. 30: 16741-16754, 2010.

    Zuschratter W, Gass P, Herdegen T, Scheich H. Comparison of frequency-specific c-Fos expression and fluoro-2-deoxyglucose uptake in auditory cortex of gerbils (Meriones unguiculatus). Eur. J. Neurosci. 7: 1614-1626, 1995.

    下載圖示 校內:2016-09-06公開
    校外:2016-09-06公開
    QR CODE