| 研究生: |
游雅筑 Yu, Ya-Chu |
|---|---|
| 論文名稱: |
線性聚(L-離胺酸)-嵌段-聚(L-絲胺酸) 雙嵌段共聚物之水膠成膠性質探討 Hydrogelation of Linear Poly(L-lysine)-block-Poly(L-serine) Block Copolypeptides |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 雙嵌段共聚物 、水膠 、聚胺基酸 、開環聚合法 |
| 外文關鍵詞: | Diblock copolymer, hydrogel, polypeptide, ring-opening polymerization |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Agrawal, C.M., Reconstructing the human body using biomaterials. Jom, 1998. 50: p. 31-35.
2. Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in polymer science, 2007. 32(8-9): p. 762-798.
3. Las-Casas, B., et al., The emergence of hybrid cellulose nanomaterials as promising biomaterials. International Journal of Biological Macromolecules, 2023. 250: p. 126007.
4. de León, E.H.-P., et al., Intelligent and smart biomaterials for sustainable 3D printing applications. Current Opinion in Biomedical Engineering, 2023. 26: p. 100450.
5. Schipani, R., et al., Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering. Connective Tissue Research, 2020. 61(2): p. 174-189.
6. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 2001. 53(3): p. 321-339.
7. Taylor, D.L. and M. in het Panhuis, Self‐healing hydrogels. Advanced Materials, 2016. 28(41): p. 9060-9093.
8. Rajbhandary, A. and B.L. Nilsson, Self-assembling hydrogels, in GELS HANDBOOK: Fundamentals, Properties and Applications Volume 1: Fundamentals of Hydrogels. 2016, World Scientific. p. 219-250.
9. Ren, K., et al., Injectable polypeptide hydrogels with tunable microenvironment for 3D spreading and chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells. Biomacromolecules, 2016. 17(12): p. 3862-3871.
10. Zhang, K., et al., Shape morphing of hydrogels by harnessing enzyme enabled mechanoresponse. Nature Communications, 2024. 15(1): p. 249.
11. Mengyuan, H., et al., Modification and preparation of four natural hydrogels and their application in biopharmaceutical delivery. Polymer Bulletin, 2023. 80(7): p. 7101-7144.
12. Taghipour, Y.D., et al., The application of hydrogels based on natural polymers for tissue engineering. Current medicinal chemistry, 2020. 27(16): p. 2658-2680.
13. Arens, L. and M. Wilhelm, Self‐Assembled Acrylic ABA Triblock Copolymer Hydrogels with Various Block Compositions: Water Absorbency, Rheology, and SAXS. Macromolecular Chemistry and Physics, 2019. 220(20): p. 1900093.
14. Simion, A., et al. Synthesis and Characterization of Self-assembled Hydrogels Based on Amphiphilic Derivates of Chitosan and Gelatin. in International Conference on Nanotechnologies and Biomedical Engineering. 2023. Springer.
15. Kim, J.H., et al., Self-assembled, photoluminescent peptide hydrogel as a versatile platform for enzyme-based optical biosensors. Biosensors and Bioelectronics, 2011. 26(5): p. 1860-1865.
16. Tang, J.D., C. Mura, and K.J. Lampe, Stimuli-responsive, pentapeptide, nanofiber hydrogel for tissue engineering. Journal of the American Chemical Society, 2019. 141(12): p. 4886-4899.
17. Altunbas, A., et al., Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials, 2011. 32(25): p. 5906-5914.
18. Xu, Q., et al., Injectable polypeptide hydrogel as biomimetic scaffolds with tunable bioactivity and controllable cell adhesion. Biomacromolecules, 2017. 18(4): p. 1411-1418.
19. Phan, T.H.M., et al., Polypeptide composition and topology affect hydrogelation of star-shaped poly (l-lysine)-based amphiphilic copolypeptides. Gels, 2021. 7(3): p. 131.
20. Nowak, A.P., et al., Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature, 2002. 417(6887): p. 424-428.
21. Hou, S.-S., et al., Self-Assembly and Hydrogelation of Coil–Sheet Poly (l-lysine)-block-poly (l-threonine) Block Copolypeptides. Macromolecules, 2018. 51(20): p. 8054-8063.
22. Xie, X., et al., Injectable, stable, and biodegradable hydrogel with platelet-rich plasma induced by l-serine and sodium alginate for effective treatment of intrauterine adhesions. International Journal of Biological Macromolecules, 2024. 270: p. 132363.
23. Schell, M.J., M.E. Molliver, and S.H. Snyder, D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proceedings of the National Academy of Sciences, 1995. 92(9): p. 3948-3952.
24. Maralani, M.N., A. Movahedian, and S.H. Javanmard, Antioxidant and cytoprotective effects of L-Serine on human endothelial cells. Research in Pharmaceutical Sciences, 2012. 7(4): p. 209.
25. Zhang, D., et al., Bio-inspired poly-DL-serine materials resist the foreign-body response. Nature Communications, 2021. 12(1): p. 5327.
26. Kramer, J.R., et al., Chemically tunable mucin chimeras assembled on living cells. Proceedings of the National Academy of Sciences, 2015. 112(41): p. 12574-12579.
27. Hu, X., et al., H2O2-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery. ACS nano, 2017. 11(1): p. 613-620.
28. Kricheldorf, H.R., Polypeptides and 100 years of chemistry of α‐amino acid N‐carboxyanhydrides. Angewandte Chemie International Edition, 2006. 45(35): p. 5752-5784.
29. Nisal, R. and M. Jayakannan, Tertiary-butylbenzene functionalization as a strategy for β-sheet polypeptides. Biomacromolecules, 2022. 23(6): p. 2667-2684.
30. Dinda, P., et al., Poly (Acryloyl-l-Serine): A Reactive Polypeptide to Introduce Zwitterion and Amphiphilicity for Stimuli-Responsiveness and Gelability. Macromolecules, 2024. 57(4): p. 1699-1712.
31. Lopez, M.J. and S.S. Mohiuddin, Biochemistry, essential amino acids, in StatPearls [Internet]. 2024, StatPearls Publishing.
32. Wang, M., et al., Left or right: how does amino acid chirality affect the handedness of nanostructures self-assembled from short amphiphilic peptides? Journal of the American Chemical Society, 2017. 139(11): p. 4185-4194.
33. West, J.D., Experimental approaches for investigating disulfide-based redox relays in cells. Chemical research in toxicology, 2022. 35(10): p. 1676-1689.
34. Sun, P.D., C.E. Foster, and J.C. Boyington, Overview of protein structural and functional folds. Current protocols in protein science, 2004. 35(1): p. 17.1. 1-17.1. 189.
35. Heim, M., L. Römer, and T. Scheibel, Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins. Chemical Society Reviews, 2010. 39(1): p. 156-164.
36. Süssmuth, R.D. and A. Mainz, Nonribosomal peptide synthesis—principles and prospects. Angewandte Chemie International Edition, 2017. 56(14): p. 3770-3821.
37. Behrendt, R., P. White, and J. Offer, Advances in Fmoc solid‐phase peptide synthesis. Journal of Peptide Science, 2016. 22(1): p. 4-27.
38. Xinyue, W. and J. Kang, Chemical synthesis of peptides and proteins. Progress in Chemistry, 2023. 35(4): p. 526-542.
39. Sharma, A., et al., Liquid-phase peptide synthesis (LPPS): a third wave for the preparation of peptides. Chemical Reviews, 2022. 122(16): p. 13516-13546.
40. Deming, T., Peptide-based materials. Vol. 310. 2012: Springer Science & Business Media.
41. Deng, C., et al., Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Progress in Polymer Science, 2014. 39(2): p. 330-364.
42. Mazo, A.R., et al., Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chemical society reviews, 2020. 49(14): p. 4737-4834.
43. Leuchs, H., Ueber die Glycin‐carbonsäure. Berichte der deutschen chemischen Gesellschaft, 1906. 39(1): p. 857-861.
44. Eckert, H. and B. Forster, Triphosgene, a crystalline phosgene substitute. Angewandte Chemie International Edition in English, 1987. 26(9): p. 894-895.
45. Hadjichristidis, N., et al., Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chemical reviews, 2009. 109(11): p. 5528-5578.
46. Hehir, S. and N.R. Cameron, Recent advances in drug delivery systems based on polypeptides prepared from N‐carboxyanhydrides. Polymer international, 2014. 63(6): p. 943-954.
47. Wu, Y., et al., Recent advances and future developments in the preparation of polypeptides via N-carboxyanhydride (NCA) ring-opening polymerization. Journal of the American Chemical Society, 2024. 146(35): p. 24189-24208.
48. Pouton, C.W., et al., Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. Journal of controlled release, 1998. 53(1-3): p. 289-299.
49. Zaro, J.L. and W.-C. Shen, Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Frontiers of Chemical Science and Engineering, 2015. 9: p. 407-427.
50. Wender, P.A., et al., The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proceedings of the National Academy of Sciences, 2000. 97(24): p. 13003-13008.
51. Aldilla, V.R., et al., Hydrogels with intrinsic antibacterial activity prepared from naphthyl anthranilamide (NaA) capped peptide mimics. Scientific Reports, 2022. 12(1): p. 22259.
52. Roy, S. and P.K. Das, Antibacterial hydrogels of amino acid‐based cationic amphiphiles. Biotechnology and bioengineering, 2008. 100(4): p. 756-764.
53. Philip, V., et al., A survey of aspartate− phenylalanine and glutamate− phenylalanine interactions in the protein data bank: Searching for anion− π pairs. Biochemistry, 2011. 50(14): p. 2939-2950.
54. Trevino, S.R., J.M. Scholtz, and C.N. Pace, Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa. Journal of molecular biology, 2007. 366(2): p. 449-460.
55. Dias, C.L., M. Karttunen, and H.S. Chan, Hydrophobic interactions in the formation of secondary structures in small peptides. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 2011. 84(4): p. 041931.
56. Löwik, D.W. and J.C. van Hest, Peptide based amphiphiles. Chemical Society Reviews, 2004. 33(4): p. 234-245.
57. Wiradharma, N., Y.W. Tong, and Y.Y. Yang, Design and evaluation of peptide amphiphiles with different hydrophobic blocks for simultaneous delivery of drugs and genes. Macromolecular rapid communications, 2010. 31(13): p. 1212-1217.
58. Thomas, T., H.-A. Tajmir-Riahi, and C. Pillai, Biodegradable polymers for gene delivery. Molecules, 2019. 24(20): p. 3744.
59. Tang, C.-C., et al., Block length and topology affect self-assembly and gelation of poly (L-lysine)-block-poly (S-benzyl-l-cysteine) block copolypeptides. Polymer, 2021. 228: p. 123891.
60. Zhou, C., et al., A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. Biomaterials, 2011. 32(11): p. 2704-2712.
61. Lertwimol, T., et al., A facile strategy for promoting cell adhesion and function on three-dimensional printed hydrogels using photocurable epsilon-poly-L-lysine. European Polymer Journal, 2023. 196: p. 112245.
62. Cai, L., et al., Optimal poly (L-lysine) grafting density in hydrogels for promoting neural progenitor cell functions. Biomacromolecules, 2012. 13(5): p. 1663-1674.
63. Lam, J., et al., Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly (L-Lysine) for applications in cartilage tissue engineering. Biomaterials, 2016. 83: p. 332-346.
64. Kumar, M.M.M., et al., Poly (γ-) Glutamic acid: a promising biopolymer. Def. Life Sci. J, 2018. 3: p. 301-306.
65. Obst, M. and A. Steinbüchel, Microbial degradation of poly (amino acid) s. Biomacromolecules, 2004. 5(4): p. 1166-1176.
66. Serra, M., et al., Polyglutamate: unleashing the versatility of a biopolymer for cosmetic industry applications. Cosmetics, 2024. 11(3): p. 76.
67. Bajaj, I. and R. Singhal, Poly (glutamic acid)–an emerging biopolymer of commercial interest. Bioresource technology, 2011. 102(10): p. 5551-5561.
68. Watanabe, T., et al., Chemoenzymatic polymerization of l-serine ethyl Ester in aqueous media without side-group protection. ACS Polymers Au, 2022. 2(3): p. 147-156.
69. Coyle, J.T., D. Balu, and H. Wolosker, D-serine, the shape-shifting NMDA receptor co-agonist. Neurochemical research, 2020. 45: p. 1344-1353.
70. Murtas, G., et al., L-serine synthesis via the phosphorylated pathway in humans. Cellular and Molecular Life Sciences, 2020. 77(24): p. 5131-5148.
71. Di Cera, E., Serine proteases. IUBMB life, 2009. 61(5): p. 510-515.
72. Tian, Z., H. Chen, and P. Zhao, Compliant immune response of silk-based biomaterials broadens application in wound treatment. Frontiers in Pharmacology, 2025. 16: p. 1548837.
73. Ekasurya, W., et al., Synthesis and degradation properties of sericin/PVA hydrogels. Gels, 2023. 9(2): p. 76.
74. Yu, J., et al., Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano letters, 2017. 17(2): p. 733-739.
75. Buwalda, S.J., et al., Hydrogels in a historical perspective: From simple networks to smart materials. Journal of controlled release, 2014. 190: p. 254-273.
76. Wichterle, O. and D. Lim, Hydrophilic gels for biological use. Nature, 1960. 185(4706): p. 117-118.
77. Choi, S.W., et al., Thermoreversible gelation of poly (ethylene oxide) biodegradable polyester block copolymers. II. Journal of Polymer Science Part A: Polymer Chemistry, 1999. 37(13): p. 2207-2218.
78. Jeong, B., et al., Thermoreversible gelation of poly (ethylene oxide) biodegradable polyester block copolymers. Journal of Polymer Science Part A: Polymer Chemistry, 1999. 37(6): p. 751-760.
79. Slager, J. and A.J. Domb, Biopolymer stereocomplexes. Advanced drug delivery reviews, 2003. 55(4): p. 549-583.
80. Chujo, Y., K. Sada, and T. Saegusa, Cobalt (III) bipyridyl-branched polyoxazoline complex as a thermally and redox reversible hydrogel. Macromolecules, 1993. 26(24): p. 6320-6323.
81. Chujo, Y., K. Sada, and T. Saegusa, Iron (II) bipyridyl-branched polyoxazoline complex as a thermally reversible hydrogel. Macromolecules, 1993. 26(24): p. 6315-6319.
82. Jing, P., et al., Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules, 2008. 9(9): p. 2438-2446.
83. Wang, C., R.J. Stewart, and J. KopeČek, Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature, 1999. 397(6718): p. 417-420.
84. Petka, W.A., et al., Reversible hydrogels from self-assembling artificial proteins. Science, 1998. 281(5375): p. 389-392.
85. Li, Z., F. Lu, and Y. Liu, A review of the mechanism, properties, and applications of hydrogels prepared by enzymatic cross-linking. Journal of Agricultural and Food Chemistry, 2023. 71(27): p. 10238-10249.
86. Naranjo-Alcazar, R., et al., Research progress in enzymatically cross-linked hydrogels as injectable systems for bioprinting and tissue engineering. Gels, 2023. 9(3): p. 230.
87. Pereira, R.F. and P.J. Bártolo, 3D bioprinting of photocrosslinkable hydrogel constructs. Journal of Applied Polymer Science, 2015. 132(48).
88. Ma, H., et al., Effects and progress of photo-crosslinking hydrogels in wound healing improvement. Gels, 2022. 8(10): p. 609.
89. Liu, J., et al., Current understanding of the applications of photocrosslinked hydrogels in biomedical engineering. Gels, 2022. 8(4): p. 216.
90. Yigit, S., R. Sanyal, and A. Sanyal, Fabrication and functionalization of hydrogels through “click” chemistry. Chemistry–An Asian Journal, 2011. 6(10): p. 2648-2659.
91. Malkoch, M., et al., Synthesis of well-defined hydrogel networks using Click chemistry. Chemical Communications, 2006(26): p. 2774-2776.
92. Li, X. and Y. Xiong, Application of “click” chemistry in biomedical hydrogels. ACS omega, 2022. 7(42): p. 36918-36928.
93. Li, Y. and Y. Cao, The physical chemistry for the self-assembly of peptide hydrogels. Chinese Journal of Polymer Science, 2018. 36: p. 366-378.
94. Huang, C.-J. and F.-C. Chang, Polypeptide diblock copolymers: syntheses and properties of poly (N-isopropylacrylamide)-b-polylysine. Macromolecules, 2008. 41(19): p. 7041-7052.
95. Zhang, J.-T., R. Bhat, and K.D. Jandt, Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta biomaterialia, 2009. 5(1): p. 488-497.
96. Hirokawa, Y., et al., Sponge-like heterogeneous gels: hierarchical structures in poly (N-isopropylacrylamide) chemical gels as observed by combined scattering and confocal microscopy method. Macromolecules, 2008. 41(21): p. 8210-8219.
97. Grinberg, V.Y., et al., Studies of the thermal volume transition of poly (N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry. 2. Thermodynamic functions. Macromolecules, 2000. 33(23): p. 8685-8692.
98. Salgado-Rodrıguez, R., A. Licea-Claverıe, and K. Arndt, Random copolymers of N-isopropylacrylamide and methacrylic acid monomers with hydrophobic spacers: pH-tunable temperature sensitive materials. European polymer journal, 2004. 40(8): p. 1931-1946.
99. Wu, D., et al., Photosensitive peptide hydrogels as smart materials for applications. Chinese Chemical Letters, 2018. 29(7): p. 1098-1104.
100. Feng, W. and Z. Wang, Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing. Carbohydrate polymers, 2022. 294: p. 119824.
101. Sun, Y., et al., Nonionic and water-soluble poly (d/l-serine) as a promising biomedical polymer for cryopreservation. ACS Applied Materials & Interfaces, 2021. 13(16): p. 18454-18461.
102. Micsonai, A., É. Bulyáki, and J. Kardos, BeStSel: from secondary structure analysis to protein fold prediction by circular dichroism spectroscopy. Structural genomics: general applications, 2021: p. 175-189.
103. Stani, C., et al., FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020. 229: p. 118006.
104. Sadat, A. and I.J. Joye, Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins. Applied Sciences, 2020. 10(17): p. 5918.
105. Yang, H., et al., Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nature protocols, 2015. 10(3): p. 382-396.
106. Goormaghtigh, E., J.-M. Ruysschaert, and V. Raussens, Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophysical journal, 2006. 90(8): p. 2946-2957.
107. Smith, B.M., L. Oswald, and S. Franzen, Single-pass attenuated total reflection Fourier transform infrared spectroscopy for the prediction of protein secondary structure. Analytical chemistry, 2002. 74(14): p. 3386-3391.
108. Barth, A., Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007. 1767(9): p. 1073-1101.
109. McDowall, D., D.J. Adams, and A.M. Seddon, Using small angle scattering to understand low molecular weight gels. Soft Matter, 2022. 18(8): p. 1577-1590.
110. Akhtar, K., et al., Scanning electron microscopy: Principle and applications in nanomaterials characterization. 2018: Springer.
111. Fletcher, N.L., C.V. Lockett, and A.F. Dexter, A pH-responsive coiled-coil peptide hydrogel. Soft Matter, 2011. 7(21): p. 10210-10218.
112. Breedveld, V., et al., Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules, 2004. 37(10): p. 3943-3953.
113. Yang, T., et al., Tailoring synthetic polypeptide design for directed fibril superstructure formation and enhanced hydrogel properties. Journal of the American Chemical Society, 2024. 146(9): p. 5823-5833.
114. Chen, B.-Y., et al., Alkyl chain-grafted poly (l-lysine) vesicles with tunable molecular assembly and membrane permeability. ACS Macro Letters, 2014. 3(3): p. 220-223.
115. Huang, Y.-C., M. Arham, and J.-S. Jan, Alkyl chain grafted poly (l-lysine): self-assembly and biomedical application as carriers. Soft Matter, 2011. 7(8): p. 3975-3983.
116. Chen, B.-Y., Y.-C. Huang, and J.-S. Jan, Molecular assembly of alkyl chain-grafted poly (L-lysine) tuned by backbone chain length and grafted alkyl chain. RSC Advances, 2015. 5(29): p. 22783-22791.
117. Huang, Y.-C., M. Arham, and J.-S. Jan, Bioactive vesicles from saccharide-and hexanoyl-modified poly (L-lysine) copolypeptides and evaluation of the cross-linked vesicles as carriers of doxorubicin for controlled drug release. European Polymer Journal, 2013. 49(3): p. 726-737.
118. Harada, A., S. Cammas, and K. Kataoka, Stabilized α-helix structure of poly (L-lysine)-block-poly (ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules, 1996. 29(19): p. 6183-6188.
119. Stojkov, G., et al., Relationship between structure and rheology of hydrogels for various applications. Gels, 2021. 7(4): p. 255.
120. Wu, M., et al., Self-healing hydrogels based on reversible noncovalent and dynamic covalent interactions: A short review. Supramolecular Materials, 2023. 2: p. 100045.
121. Kim, J., et al., Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science, 2021. 374(6564): p. 212-216.
122. Liu, J., et al., Self-growing hydrogel particles with applications for reservoir control: Growth behaviors and influencing factors. The Journal of Physical Chemistry B, 2021. 125(34): p. 9870-9878.
123. Clarke, D.E., et al., Self-healing, self-assembled β-sheet peptide–poly (γ-glutamic acid) hybrid hydrogels. Journal of the American Chemical Society, 2017. 139(21): p. 7250-7255.
124. Takei, T., et al., Fabrication of poly (vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Process Biochemistry, 2011. 46(2): p. 566-571.
125. Inouye, H., P.E. Fraser, and D.A. Kirschner, Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction. Biophysical journal, 1993. 64(2): p. 502-519.
126. Das, A., Studies on complex π-π and T-stacking features of imidazole and phenyl/p-halophenyl units in series of 5-amino-1-(phenyl/p-halophenyl) imidazole-4-carboxamides and their carbonitrile derivatives: Role of halogens in tuning of conformation. Journal of Molecular Structure, 2017. 1147: p. 520-540.
127. Liu, Y., et al., Effect of pi–pi stacking on the self-assembly of azomethine-type rod–coil liquid crystals. Liquid Crystals, 2011. 38(8): p. 995-1006.
128. Chu, B., Laser light scattering: basic principles and practice. 2007: Courier Corporation.
129. Tsai, Y.-L., et al., Zwitterionic polypeptides bearing carboxybetaine and sulfobetaine: Synthesis, self-assembly, and their interactions with proteins. Polymer Chemistry, 2018. 9(10): p. 1178-1189.
130. Sugioka, Y., et al., Thixotropic hydrogels composed of self-assembled nanofibers of double-hydrophobic elastin-like block polypeptides. International Journal of Molecular Sciences, 2021. 22(8): p. 4104.
131. Dong, H. and J.D. Hartgerink, Role of hydrophobic clusters in the stability of α-helical coiled coils and their conversion to amyloid-like β-sheets. Biomacromolecules, 2007. 8(2): p. 617-623.
132. Yu, B., et al., Hydrophilic natural polylysine as drug nanocarrier for preparation of helical delivery system. Pharmaceutics, 2022. 14(11): p. 2512.
133. Yang, Z., Z. Mao, and J. Ling, Phosgene-free synthesis of non-ionic hydrophilic polyserine. Polymer chemistry, 2016. 7(3): p. 519-522.
134. Taraban, M.B., et al., Effects of chain length on oligopeptide hydrogelation. Soft matter, 2011. 7(6): p. 2624-2631.
135. Caplan, M.R., et al., Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence. Biomaterials, 2002. 23(1): p. 219-227.
136. Chen, Y.-F., et al., Peptide fibrillar assemblies exhibit membranolytic effects and antimetastatic activity on lung cancer cells. Biomacromolecules, 2020. 21(9): p. 3836-3846.
校內:2030-07-01公開