簡易檢索 / 詳目顯示

研究生: 游雅筑
Yu, Ya-Chu
論文名稱: 線性聚(L-離胺酸)-嵌段-聚(L-絲胺酸) 雙嵌段共聚物之水膠成膠性質探討
Hydrogelation of Linear Poly(L-lysine)-block-Poly(L-serine) Block Copolypeptides
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 97
中文關鍵詞: 雙嵌段共聚物水膠聚胺基酸開環聚合法
外文關鍵詞: Diblock copolymer, hydrogel, polypeptide, ring-opening polymerization
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 i Extended Abstract ii 誌謝 ix 目錄 viii 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1前言 1 1.1.1生醫材料 1 1.1.2水膠 1 1.2研究動機 2 第二章 文獻回顧 5 2.1聚胺基酸與蛋白質 5 2.1.1胺基酸聚合方法 6 2.1.2 NCAs開環聚合法 7 2.2水膠 14 2.2.1水膠之發展與近況 14 2.2.2聚胺基酸水膠成膠機制 15 2.2.3智慧型水膠 16 第三章 研究方法及步驟 18 3.1實驗材料 18 3.2實驗設備及儀器 18 3.3無水溶劑製備 19 3.4聚胺基酸合成 19 3.4.1 N-羧酸酐(N-carboxy anhydrides, NCAs)合成方法 19 3.5雙嵌段聚(L-離胺酸)-嵌段-聚(L-絲胺酸)性質分析 21 3.5.1液態核磁共振儀 21 3.5.2圓二色光譜儀 22 3.5.3傅立葉轉換紅外線光譜儀 23 3.5.4 X光繞射儀 24 3.5.5小角度X光散射儀 25 3.5.6掃描式電子顯微鏡 26 3.5.7水膠之黏彈性質測試 26 第四章 結果與討論 28 4.1雙嵌段共聚胺基酸之聚合度分析 28 4.2雙嵌段共聚物水膠之成膠性質分析 52 4.3雙嵌段共聚物之二級結構 54 4.4雙嵌段聚胺基酸水膠之流變性質 57 4.4.1頻率掃描實驗 57 4.4.2應變掃描實驗 58 4.4.3水膠之回復性質測試 60 4.5雙嵌段共聚物之堆疊行為 62 第五章 結論 70 第六章 參考文獻 72

    1. Agrawal, C.M., Reconstructing the human body using biomaterials. Jom, 1998. 50: p. 31-35.
    2. Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in polymer science, 2007. 32(8-9): p. 762-798.
    3. Las-Casas, B., et al., The emergence of hybrid cellulose nanomaterials as promising biomaterials. International Journal of Biological Macromolecules, 2023. 250: p. 126007.
    4. de León, E.H.-P., et al., Intelligent and smart biomaterials for sustainable 3D printing applications. Current Opinion in Biomedical Engineering, 2023. 26: p. 100450.
    5. Schipani, R., et al., Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering. Connective Tissue Research, 2020. 61(2): p. 174-189.
    6. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 2001. 53(3): p. 321-339.
    7. Taylor, D.L. and M. in het Panhuis, Self‐healing hydrogels. Advanced Materials, 2016. 28(41): p. 9060-9093.
    8. Rajbhandary, A. and B.L. Nilsson, Self-assembling hydrogels, in GELS HANDBOOK: Fundamentals, Properties and Applications Volume 1: Fundamentals of Hydrogels. 2016, World Scientific. p. 219-250.
    9. Ren, K., et al., Injectable polypeptide hydrogels with tunable microenvironment for 3D spreading and chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells. Biomacromolecules, 2016. 17(12): p. 3862-3871.
    10. Zhang, K., et al., Shape morphing of hydrogels by harnessing enzyme enabled mechanoresponse. Nature Communications, 2024. 15(1): p. 249.
    11. Mengyuan, H., et al., Modification and preparation of four natural hydrogels and their application in biopharmaceutical delivery. Polymer Bulletin, 2023. 80(7): p. 7101-7144.
    12. Taghipour, Y.D., et al., The application of hydrogels based on natural polymers for tissue engineering. Current medicinal chemistry, 2020. 27(16): p. 2658-2680.
    13. Arens, L. and M. Wilhelm, Self‐Assembled Acrylic ABA Triblock Copolymer Hydrogels with Various Block Compositions: Water Absorbency, Rheology, and SAXS. Macromolecular Chemistry and Physics, 2019. 220(20): p. 1900093.
    14. Simion, A., et al. Synthesis and Characterization of Self-assembled Hydrogels Based on Amphiphilic Derivates of Chitosan and Gelatin. in International Conference on Nanotechnologies and Biomedical Engineering. 2023. Springer.
    15. Kim, J.H., et al., Self-assembled, photoluminescent peptide hydrogel as a versatile platform for enzyme-based optical biosensors. Biosensors and Bioelectronics, 2011. 26(5): p. 1860-1865.
    16. Tang, J.D., C. Mura, and K.J. Lampe, Stimuli-responsive, pentapeptide, nanofiber hydrogel for tissue engineering. Journal of the American Chemical Society, 2019. 141(12): p. 4886-4899.
    17. Altunbas, A., et al., Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials, 2011. 32(25): p. 5906-5914.
    18. Xu, Q., et al., Injectable polypeptide hydrogel as biomimetic scaffolds with tunable bioactivity and controllable cell adhesion. Biomacromolecules, 2017. 18(4): p. 1411-1418.
    19. Phan, T.H.M., et al., Polypeptide composition and topology affect hydrogelation of star-shaped poly (l-lysine)-based amphiphilic copolypeptides. Gels, 2021. 7(3): p. 131.
    20. Nowak, A.P., et al., Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature, 2002. 417(6887): p. 424-428.
    21. Hou, S.-S., et al., Self-Assembly and Hydrogelation of Coil–Sheet Poly (l-lysine)-block-poly (l-threonine) Block Copolypeptides. Macromolecules, 2018. 51(20): p. 8054-8063.
    22. Xie, X., et al., Injectable, stable, and biodegradable hydrogel with platelet-rich plasma induced by l-serine and sodium alginate for effective treatment of intrauterine adhesions. International Journal of Biological Macromolecules, 2024. 270: p. 132363.
    23. Schell, M.J., M.E. Molliver, and S.H. Snyder, D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proceedings of the National Academy of Sciences, 1995. 92(9): p. 3948-3952.
    24. Maralani, M.N., A. Movahedian, and S.H. Javanmard, Antioxidant and cytoprotective effects of L-Serine on human endothelial cells. Research in Pharmaceutical Sciences, 2012. 7(4): p. 209.
    25. Zhang, D., et al., Bio-inspired poly-DL-serine materials resist the foreign-body response. Nature Communications, 2021. 12(1): p. 5327.
    26. Kramer, J.R., et al., Chemically tunable mucin chimeras assembled on living cells. Proceedings of the National Academy of Sciences, 2015. 112(41): p. 12574-12579.
    27. Hu, X., et al., H2O2-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery. ACS nano, 2017. 11(1): p. 613-620.
    28. Kricheldorf, H.R., Polypeptides and 100 years of chemistry of α‐amino acid N‐carboxyanhydrides. Angewandte Chemie International Edition, 2006. 45(35): p. 5752-5784.
    29. Nisal, R. and M. Jayakannan, Tertiary-butylbenzene functionalization as a strategy for β-sheet polypeptides. Biomacromolecules, 2022. 23(6): p. 2667-2684.
    30. Dinda, P., et al., Poly (Acryloyl-l-Serine): A Reactive Polypeptide to Introduce Zwitterion and Amphiphilicity for Stimuli-Responsiveness and Gelability. Macromolecules, 2024. 57(4): p. 1699-1712.
    31. Lopez, M.J. and S.S. Mohiuddin, Biochemistry, essential amino acids, in StatPearls [Internet]. 2024, StatPearls Publishing.
    32. Wang, M., et al., Left or right: how does amino acid chirality affect the handedness of nanostructures self-assembled from short amphiphilic peptides? Journal of the American Chemical Society, 2017. 139(11): p. 4185-4194.
    33. West, J.D., Experimental approaches for investigating disulfide-based redox relays in cells. Chemical research in toxicology, 2022. 35(10): p. 1676-1689.
    34. Sun, P.D., C.E. Foster, and J.C. Boyington, Overview of protein structural and functional folds. Current protocols in protein science, 2004. 35(1): p. 17.1. 1-17.1. 189.
    35. Heim, M., L. Römer, and T. Scheibel, Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins. Chemical Society Reviews, 2010. 39(1): p. 156-164.
    36. Süssmuth, R.D. and A. Mainz, Nonribosomal peptide synthesis—principles and prospects. Angewandte Chemie International Edition, 2017. 56(14): p. 3770-3821.
    37. Behrendt, R., P. White, and J. Offer, Advances in Fmoc solid‐phase peptide synthesis. Journal of Peptide Science, 2016. 22(1): p. 4-27.
    38. Xinyue, W. and J. Kang, Chemical synthesis of peptides and proteins. Progress in Chemistry, 2023. 35(4): p. 526-542.
    39. Sharma, A., et al., Liquid-phase peptide synthesis (LPPS): a third wave for the preparation of peptides. Chemical Reviews, 2022. 122(16): p. 13516-13546.
    40. Deming, T., Peptide-based materials. Vol. 310. 2012: Springer Science & Business Media.
    41. Deng, C., et al., Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Progress in Polymer Science, 2014. 39(2): p. 330-364.
    42. Mazo, A.R., et al., Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chemical society reviews, 2020. 49(14): p. 4737-4834.
    43. Leuchs, H., Ueber die Glycin‐carbonsäure. Berichte der deutschen chemischen Gesellschaft, 1906. 39(1): p. 857-861.
    44. Eckert, H. and B. Forster, Triphosgene, a crystalline phosgene substitute. Angewandte Chemie International Edition in English, 1987. 26(9): p. 894-895.
    45. Hadjichristidis, N., et al., Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chemical reviews, 2009. 109(11): p. 5528-5578.
    46. Hehir, S. and N.R. Cameron, Recent advances in drug delivery systems based on polypeptides prepared from N‐carboxyanhydrides. Polymer international, 2014. 63(6): p. 943-954.
    47. Wu, Y., et al., Recent advances and future developments in the preparation of polypeptides via N-carboxyanhydride (NCA) ring-opening polymerization. Journal of the American Chemical Society, 2024. 146(35): p. 24189-24208.
    48. Pouton, C.W., et al., Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. Journal of controlled release, 1998. 53(1-3): p. 289-299.
    49. Zaro, J.L. and W.-C. Shen, Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Frontiers of Chemical Science and Engineering, 2015. 9: p. 407-427.
    50. Wender, P.A., et al., The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proceedings of the National Academy of Sciences, 2000. 97(24): p. 13003-13008.
    51. Aldilla, V.R., et al., Hydrogels with intrinsic antibacterial activity prepared from naphthyl anthranilamide (NaA) capped peptide mimics. Scientific Reports, 2022. 12(1): p. 22259.
    52. Roy, S. and P.K. Das, Antibacterial hydrogels of amino acid‐based cationic amphiphiles. Biotechnology and bioengineering, 2008. 100(4): p. 756-764.
    53. Philip, V., et al., A survey of aspartate− phenylalanine and glutamate− phenylalanine interactions in the protein data bank: Searching for anion− π pairs. Biochemistry, 2011. 50(14): p. 2939-2950.
    54. Trevino, S.R., J.M. Scholtz, and C.N. Pace, Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa. Journal of molecular biology, 2007. 366(2): p. 449-460.
    55. Dias, C.L., M. Karttunen, and H.S. Chan, Hydrophobic interactions in the formation of secondary structures in small peptides. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 2011. 84(4): p. 041931.
    56. Löwik, D.W. and J.C. van Hest, Peptide based amphiphiles. Chemical Society Reviews, 2004. 33(4): p. 234-245.
    57. Wiradharma, N., Y.W. Tong, and Y.Y. Yang, Design and evaluation of peptide amphiphiles with different hydrophobic blocks for simultaneous delivery of drugs and genes. Macromolecular rapid communications, 2010. 31(13): p. 1212-1217.
    58. Thomas, T., H.-A. Tajmir-Riahi, and C. Pillai, Biodegradable polymers for gene delivery. Molecules, 2019. 24(20): p. 3744.
    59. Tang, C.-C., et al., Block length and topology affect self-assembly and gelation of poly (L-lysine)-block-poly (S-benzyl-l-cysteine) block copolypeptides. Polymer, 2021. 228: p. 123891.
    60. Zhou, C., et al., A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. Biomaterials, 2011. 32(11): p. 2704-2712.
    61. Lertwimol, T., et al., A facile strategy for promoting cell adhesion and function on three-dimensional printed hydrogels using photocurable epsilon-poly-L-lysine. European Polymer Journal, 2023. 196: p. 112245.
    62. Cai, L., et al., Optimal poly (L-lysine) grafting density in hydrogels for promoting neural progenitor cell functions. Biomacromolecules, 2012. 13(5): p. 1663-1674.
    63. Lam, J., et al., Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly (L-Lysine) for applications in cartilage tissue engineering. Biomaterials, 2016. 83: p. 332-346.
    64. Kumar, M.M.M., et al., Poly (γ-) Glutamic acid: a promising biopolymer. Def. Life Sci. J, 2018. 3: p. 301-306.
    65. Obst, M. and A. Steinbüchel, Microbial degradation of poly (amino acid) s. Biomacromolecules, 2004. 5(4): p. 1166-1176.
    66. Serra, M., et al., Polyglutamate: unleashing the versatility of a biopolymer for cosmetic industry applications. Cosmetics, 2024. 11(3): p. 76.
    67. Bajaj, I. and R. Singhal, Poly (glutamic acid)–an emerging biopolymer of commercial interest. Bioresource technology, 2011. 102(10): p. 5551-5561.
    68. Watanabe, T., et al., Chemoenzymatic polymerization of l-serine ethyl Ester in aqueous media without side-group protection. ACS Polymers Au, 2022. 2(3): p. 147-156.
    69. Coyle, J.T., D. Balu, and H. Wolosker, D-serine, the shape-shifting NMDA receptor co-agonist. Neurochemical research, 2020. 45: p. 1344-1353.
    70. Murtas, G., et al., L-serine synthesis via the phosphorylated pathway in humans. Cellular and Molecular Life Sciences, 2020. 77(24): p. 5131-5148.
    71. Di Cera, E., Serine proteases. IUBMB life, 2009. 61(5): p. 510-515.
    72. Tian, Z., H. Chen, and P. Zhao, Compliant immune response of silk-based biomaterials broadens application in wound treatment. Frontiers in Pharmacology, 2025. 16: p. 1548837.
    73. Ekasurya, W., et al., Synthesis and degradation properties of sericin/PVA hydrogels. Gels, 2023. 9(2): p. 76.
    74. Yu, J., et al., Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano letters, 2017. 17(2): p. 733-739.
    75. Buwalda, S.J., et al., Hydrogels in a historical perspective: From simple networks to smart materials. Journal of controlled release, 2014. 190: p. 254-273.
    76. Wichterle, O. and D. Lim, Hydrophilic gels for biological use. Nature, 1960. 185(4706): p. 117-118.
    77. Choi, S.W., et al., Thermoreversible gelation of poly (ethylene oxide) biodegradable polyester block copolymers. II. Journal of Polymer Science Part A: Polymer Chemistry, 1999. 37(13): p. 2207-2218.
    78. Jeong, B., et al., Thermoreversible gelation of poly (ethylene oxide) biodegradable polyester block copolymers. Journal of Polymer Science Part A: Polymer Chemistry, 1999. 37(6): p. 751-760.
    79. Slager, J. and A.J. Domb, Biopolymer stereocomplexes. Advanced drug delivery reviews, 2003. 55(4): p. 549-583.
    80. Chujo, Y., K. Sada, and T. Saegusa, Cobalt (III) bipyridyl-branched polyoxazoline complex as a thermally and redox reversible hydrogel. Macromolecules, 1993. 26(24): p. 6320-6323.
    81. Chujo, Y., K. Sada, and T. Saegusa, Iron (II) bipyridyl-branched polyoxazoline complex as a thermally reversible hydrogel. Macromolecules, 1993. 26(24): p. 6315-6319.
    82. Jing, P., et al., Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules, 2008. 9(9): p. 2438-2446.
    83. Wang, C., R.J. Stewart, and J. KopeČek, Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature, 1999. 397(6718): p. 417-420.
    84. Petka, W.A., et al., Reversible hydrogels from self-assembling artificial proteins. Science, 1998. 281(5375): p. 389-392.
    85. Li, Z., F. Lu, and Y. Liu, A review of the mechanism, properties, and applications of hydrogels prepared by enzymatic cross-linking. Journal of Agricultural and Food Chemistry, 2023. 71(27): p. 10238-10249.
    86. Naranjo-Alcazar, R., et al., Research progress in enzymatically cross-linked hydrogels as injectable systems for bioprinting and tissue engineering. Gels, 2023. 9(3): p. 230.
    87. Pereira, R.F. and P.J. Bártolo, 3D bioprinting of photocrosslinkable hydrogel constructs. Journal of Applied Polymer Science, 2015. 132(48).
    88. Ma, H., et al., Effects and progress of photo-crosslinking hydrogels in wound healing improvement. Gels, 2022. 8(10): p. 609.
    89. Liu, J., et al., Current understanding of the applications of photocrosslinked hydrogels in biomedical engineering. Gels, 2022. 8(4): p. 216.
    90. Yigit, S., R. Sanyal, and A. Sanyal, Fabrication and functionalization of hydrogels through “click” chemistry. Chemistry–An Asian Journal, 2011. 6(10): p. 2648-2659.
    91. Malkoch, M., et al., Synthesis of well-defined hydrogel networks using Click chemistry. Chemical Communications, 2006(26): p. 2774-2776.
    92. Li, X. and Y. Xiong, Application of “click” chemistry in biomedical hydrogels. ACS omega, 2022. 7(42): p. 36918-36928.
    93. Li, Y. and Y. Cao, The physical chemistry for the self-assembly of peptide hydrogels. Chinese Journal of Polymer Science, 2018. 36: p. 366-378.
    94. Huang, C.-J. and F.-C. Chang, Polypeptide diblock copolymers: syntheses and properties of poly (N-isopropylacrylamide)-b-polylysine. Macromolecules, 2008. 41(19): p. 7041-7052.
    95. Zhang, J.-T., R. Bhat, and K.D. Jandt, Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta biomaterialia, 2009. 5(1): p. 488-497.
    96. Hirokawa, Y., et al., Sponge-like heterogeneous gels: hierarchical structures in poly (N-isopropylacrylamide) chemical gels as observed by combined scattering and confocal microscopy method. Macromolecules, 2008. 41(21): p. 8210-8219.
    97. Grinberg, V.Y., et al., Studies of the thermal volume transition of poly (N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry. 2. Thermodynamic functions. Macromolecules, 2000. 33(23): p. 8685-8692.
    98. Salgado-Rodrıguez, R., A. Licea-Claverıe, and K. Arndt, Random copolymers of N-isopropylacrylamide and methacrylic acid monomers with hydrophobic spacers: pH-tunable temperature sensitive materials. European polymer journal, 2004. 40(8): p. 1931-1946.
    99. Wu, D., et al., Photosensitive peptide hydrogels as smart materials for applications. Chinese Chemical Letters, 2018. 29(7): p. 1098-1104.
    100. Feng, W. and Z. Wang, Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing. Carbohydrate polymers, 2022. 294: p. 119824.
    101. Sun, Y., et al., Nonionic and water-soluble poly (d/l-serine) as a promising biomedical polymer for cryopreservation. ACS Applied Materials & Interfaces, 2021. 13(16): p. 18454-18461.
    102. Micsonai, A., É. Bulyáki, and J. Kardos, BeStSel: from secondary structure analysis to protein fold prediction by circular dichroism spectroscopy. Structural genomics: general applications, 2021: p. 175-189.
    103. Stani, C., et al., FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020. 229: p. 118006.
    104. Sadat, A. and I.J. Joye, Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins. Applied Sciences, 2020. 10(17): p. 5918.
    105. Yang, H., et al., Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nature protocols, 2015. 10(3): p. 382-396.
    106. Goormaghtigh, E., J.-M. Ruysschaert, and V. Raussens, Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophysical journal, 2006. 90(8): p. 2946-2957.
    107. Smith, B.M., L. Oswald, and S. Franzen, Single-pass attenuated total reflection Fourier transform infrared spectroscopy for the prediction of protein secondary structure. Analytical chemistry, 2002. 74(14): p. 3386-3391.
    108. Barth, A., Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007. 1767(9): p. 1073-1101.
    109. McDowall, D., D.J. Adams, and A.M. Seddon, Using small angle scattering to understand low molecular weight gels. Soft Matter, 2022. 18(8): p. 1577-1590.
    110. Akhtar, K., et al., Scanning electron microscopy: Principle and applications in nanomaterials characterization. 2018: Springer.
    111. Fletcher, N.L., C.V. Lockett, and A.F. Dexter, A pH-responsive coiled-coil peptide hydrogel. Soft Matter, 2011. 7(21): p. 10210-10218.
    112. Breedveld, V., et al., Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules, 2004. 37(10): p. 3943-3953.
    113. Yang, T., et al., Tailoring synthetic polypeptide design for directed fibril superstructure formation and enhanced hydrogel properties. Journal of the American Chemical Society, 2024. 146(9): p. 5823-5833.
    114. Chen, B.-Y., et al., Alkyl chain-grafted poly (l-lysine) vesicles with tunable molecular assembly and membrane permeability. ACS Macro Letters, 2014. 3(3): p. 220-223.
    115. Huang, Y.-C., M. Arham, and J.-S. Jan, Alkyl chain grafted poly (l-lysine): self-assembly and biomedical application as carriers. Soft Matter, 2011. 7(8): p. 3975-3983.
    116. Chen, B.-Y., Y.-C. Huang, and J.-S. Jan, Molecular assembly of alkyl chain-grafted poly (L-lysine) tuned by backbone chain length and grafted alkyl chain. RSC Advances, 2015. 5(29): p. 22783-22791.
    117. Huang, Y.-C., M. Arham, and J.-S. Jan, Bioactive vesicles from saccharide-and hexanoyl-modified poly (L-lysine) copolypeptides and evaluation of the cross-linked vesicles as carriers of doxorubicin for controlled drug release. European Polymer Journal, 2013. 49(3): p. 726-737.
    118. Harada, A., S. Cammas, and K. Kataoka, Stabilized α-helix structure of poly (L-lysine)-block-poly (ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules, 1996. 29(19): p. 6183-6188.
    119. Stojkov, G., et al., Relationship between structure and rheology of hydrogels for various applications. Gels, 2021. 7(4): p. 255.
    120. Wu, M., et al., Self-healing hydrogels based on reversible noncovalent and dynamic covalent interactions: A short review. Supramolecular Materials, 2023. 2: p. 100045.
    121. Kim, J., et al., Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science, 2021. 374(6564): p. 212-216.
    122. Liu, J., et al., Self-growing hydrogel particles with applications for reservoir control: Growth behaviors and influencing factors. The Journal of Physical Chemistry B, 2021. 125(34): p. 9870-9878.
    123. Clarke, D.E., et al., Self-healing, self-assembled β-sheet peptide–poly (γ-glutamic acid) hybrid hydrogels. Journal of the American Chemical Society, 2017. 139(21): p. 7250-7255.
    124. Takei, T., et al., Fabrication of poly (vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Process Biochemistry, 2011. 46(2): p. 566-571.
    125. Inouye, H., P.E. Fraser, and D.A. Kirschner, Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction. Biophysical journal, 1993. 64(2): p. 502-519.
    126. Das, A., Studies on complex π-π and T-stacking features of imidazole and phenyl/p-halophenyl units in series of 5-amino-1-(phenyl/p-halophenyl) imidazole-4-carboxamides and their carbonitrile derivatives: Role of halogens in tuning of conformation. Journal of Molecular Structure, 2017. 1147: p. 520-540.
    127. Liu, Y., et al., Effect of pi–pi stacking on the self-assembly of azomethine-type rod–coil liquid crystals. Liquid Crystals, 2011. 38(8): p. 995-1006.
    128. Chu, B., Laser light scattering: basic principles and practice. 2007: Courier Corporation.
    129. Tsai, Y.-L., et al., Zwitterionic polypeptides bearing carboxybetaine and sulfobetaine: Synthesis, self-assembly, and their interactions with proteins. Polymer Chemistry, 2018. 9(10): p. 1178-1189.
    130. Sugioka, Y., et al., Thixotropic hydrogels composed of self-assembled nanofibers of double-hydrophobic elastin-like block polypeptides. International Journal of Molecular Sciences, 2021. 22(8): p. 4104.
    131. Dong, H. and J.D. Hartgerink, Role of hydrophobic clusters in the stability of α-helical coiled coils and their conversion to amyloid-like β-sheets. Biomacromolecules, 2007. 8(2): p. 617-623.
    132. Yu, B., et al., Hydrophilic natural polylysine as drug nanocarrier for preparation of helical delivery system. Pharmaceutics, 2022. 14(11): p. 2512.
    133. Yang, Z., Z. Mao, and J. Ling, Phosgene-free synthesis of non-ionic hydrophilic polyserine. Polymer chemistry, 2016. 7(3): p. 519-522.
    134. Taraban, M.B., et al., Effects of chain length on oligopeptide hydrogelation. Soft matter, 2011. 7(6): p. 2624-2631.
    135. Caplan, M.R., et al., Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence. Biomaterials, 2002. 23(1): p. 219-227.
    136. Chen, Y.-F., et al., Peptide fibrillar assemblies exhibit membranolytic effects and antimetastatic activity on lung cancer cells. Biomacromolecules, 2020. 21(9): p. 3836-3846.

    無法下載圖示 校內:2030-07-01公開
    校外:2030-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE