簡易檢索 / 詳目顯示

研究生: 陳致霖
Chen, Chih-Lin
論文名稱: 車輛氣動外形優化與流場分析的數值模擬研究
Numerical Simulation Study on Vehicle Aerodynamic Shape Optimization and Flow Field Analysis
指導教授: 林三益
Lin, San-Yih
闕志哲
Chueh, Chih-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 89
中文關鍵詞: SU2DrivAer Model車輛幾何外型優化計算流體力學伴隨運算子
外文關鍵詞: SU2, DrivAer Model, Vehicle Shape Optimization, Computational Fluid Dynamics (CFD), Adjoint Operator
相關次數: 點閱:31下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對開源之計算流體力學(CFD)軟體SU2進行一系列模擬與外型優化分析。研究主要目標為透過車輛模型外型之幾何變形設計,降低空氣阻力以減少能源的消耗,進而提升氣動效率與燃油使用率,達到降低碳排放與減輕環境負擔之效益。
    使用SU2進行優化之前,須先驗證其模擬準確性與可靠性。因此使用SU2與商業軟體ANSYS Fluent求解不可壓縮雷諾平均納維-斯托克斯方程式(Incompressible Reynolds-Averaged Navier–Stokes Equations),並同時使用Shear Stress Transport(SST)k-ω紊流模型分別對二維及三維DrivAer Fastback車體模型進行模擬與比對。比對內容包含升力係數(Cl)、阻力係數(Cd)及表面壓力係數(Cp)分佈等關鍵氣動參數,藉此探討兩種軟體模擬結果間之差異與誤差,驗證SU2在車輛外型氣動優化應用中的準確性與可行性。在此基礎上,進一步利用SU2所提供之優化工具,透過伴隨運算子(adjoint operator)進行幾何外型變形與優化設計,有效提升車體之空氣動力性能。
    綜上所述,SU2不僅具備可靠之模擬能力,亦能結合高效率的形狀優化流程,為車輛氣動設計提供一套具準確性、靈活性與可擴展性之數值工具,具備實際工程應用之潛力。

    This study presents a series of simulations and aerodynamic shape optimization analyses using the open-source computational fluid dynamics (CFD) software SU2. The primary objective is to reduce aerodynamic drag (Cd) through geometric modifications of a vehicle model, thereby improving aerodynamic efficiency, enhancing fuel economy, and ultimately reducing carbon emissions and environmental impact.
    Prior to performing the shape optimization, the accuracy and reliability of SU2 are validated. Both SU2 and the commercial solver ANSYS Fluent are used to solve the incompressible Navier-Stokes equations with the Shear Stress Transport (SST) k-ω turbulence model. Simulations are conducted on both two-dimensional and three-dimensional DrivAer Fastback vehicle models. Key aerodynamic parameters including lift coefficient (Cl), drag coefficient (Cd), and surface pressure coefficient (Cp) distributions—are compared to assess the discrepancies between the two solvers and to verify the feasibility of using SU2 for vehicle aerodynamic simulations.
    Building upon this validation, SU2 built-in optimization framework is employed to perform shape refinement using adjoint-based sensitivity analysis and geometric deformation. The optimization process effectively improves the aerodynamic performance of the vehicle through iterative shape adaptation.
    In conclusion, SU2 demonstrates not only reliable simulation capabilities but also an efficient and flexible optimization framework, highlighting its potential as a powerful and extensible numerical tool for practical aerodynamic design applications in the automotive industry.

    摘要 i Abstract iii 致謝 vi 目錄 vii 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 1 1.3 文獻回顧 4 1.4 內容大綱 6 第二章 數值方法 9 2.1 控制方程式 9 2.2 Shear Stress Transport(SST)k-ω model 12 2.3 目標函數的定義 15 2.4 離散伴隨法(Discrete Adjoint Method) 16 2.5 Free-Form Deformation(FFD) 18 2.6 優化模組運作流程 19 第三章 車輛幾何模型與程式驗證 20 3.1 車輛外型模型 20 3.1.1 DrivAer模型 20 3.1.2 簡化DrivAer模型 21 3.2 Fluent與SU2程式驗證 22 3.2.1 Fluent與SU2二維Fastback程式驗證 22 3.2.2 Fluent與SU2三維Fastback程式驗證 24 第四章 結果與討論 27 4.1 網格獨立性分析 27 4.2 二維模型優化分析 29 4.2.1 初始與優化後比較 29 4.2.2 壓力係數分佈與流場結果分析 30 4.3 三維模型優化分析 31 4.3.1 簡化Fastback模型優化結果 33 4.3.2 簡化Notchback模型優化結果 34 第五章 結論及建議 37 5.1 結論 37 5.2 未來建議 39 參考文獻 41

    [1] S. Ahmed, “An experimental study of the wake structures of typical automobile shapes,” J. Wind Eng. Ind. Aerodyn., vol. 9, pp. 49–62, 1981.
    [2] S. Ahmed, G. Ramm, and G. Faltin, “Some salient features of the time-averaged ground vehicle wake,” SAE Tech. Paper 840300, 1984.
    [3] A. Cogotti, “A parametric study on the ground effect of a simplified car model,” SAE Tech. Paper 980030, 1998.
    [4] A. Heft, T. Indinger, and N. A. Adams, “Introduction of a new realistic generic car model for aerodynamic investigations,” SAE Tech. Paper 2012-01-0168, 2012.
    [5] A. Heft, T. Indinger, and N. A. Adams, “Experimental and numerical investigation of the DrivAer model,” in Proc. ASME 2012 Fluids Eng. Div. Summer Meeting, Rio Grande, Puerto Rico, USA, pp. 41–51, Jul. 2012.
    [6] D. S. Nath et al., “Drag Reduction by Application of Aerodynamic Devices in a Race Car,” Adv. Aerodyn., vol. 3, no. 1, pp. 1–20, 2021.
    [7] F. Palacios et al., “Stanford University Unstructured (SU2): An open-source integrated computational environment for multi-physics simulation and design,” AIAA Paper 2013-0287, 2013.
    [8] F. Palacios, T. D. Economon, and J. J. Alonso, “Large-scale aircraft design using SU2,” in 53rd AIAA Aerosp. Sci. Meeting, AIAA Paper 2015-1946, 2015.
    [9] T. D. Economon et al., “SU2: An open-source suite for multiphysics simulation and design,” AIAA J., vol. 54, no. 3, pp. 828–846, 2016.
    [10] G. Yang and A. Da Ronch, “Aerodynamic shape optimisation of benchmark problems using SU2,” in AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., AIAA Paper 2018-1119, 2018.
    [11] G. Yang et al., “Sensitivity assessment of optimal solution in aerodynamic design optimisation using SU2,” Aerosp. Sci. Technol., vol. 81, pp. 362–374, 2018.
    [12] T. D. Economon, “Simulation and adjoint-based design for variable density incompressible flows with heat transfer,” in AIAA Aviation 2018 Forum, AIAA 2018-3111, June 2018.
    [13] D. C. Wilcox, “Turbulence Modeling for CFD,” 2nd ed. La Cañada, CA, USA: DCW Industries, Inc., 1998.
    [14] D. C. Wilcox, “Reassessment of the scale-determining equation for advanced turbulence models,” AIAA J., vol. 26, no. 11, pp. 1299–1310, 1988.
    [15] K.-Y. Chien, “Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model,” AIAA J., vol. 20, no. 1, pp. 33–38, 1982.
    [16] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994.
    [17] F. R. Menter, M. Kuntz, and R. Langtry, “Ten years of industrial experience with the SST turbulence model,” Turbulence, Heat and Mass Transfer, vol. 4, pp. 625–632, 2003.
    [18] C. Castro, C. Lozano, F. Palacios, and E. Zuazua, “A systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids,” AIAA J., vol. 45, no. 9, pp. 2125–2139, 2007.
    [19] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geometric models,” in Proc. SIGGRAPH ’86, Dallas, TX, USA, pp. 151–160, 1986.
    [20] L. Miao, S. Mack, and T. Indinger, "Experimental and numerical investigation of automotive aerodynamics using DrivAer model," Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., Boston, MA, USA, Aug. 2–5, 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE