| 研究生: |
李育瑄 Lee, Yu-Hsuan |
|---|---|
| 論文名稱: |
10-MDP磷酸酯對仿生再礦化及牙本質黏著之影響 Effects of 10-MDP on biomimetic remineralization and dentin bonding |
| 指導教授: |
莊淑芬
Chuang, Shu-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 牙本質黏著 、通用型黏著劑 、仿生再礦化 、微滲漏 、微拉伸黏著強度 |
| 外文關鍵詞: | dentin bonding, universal adhesive, biomimetic remineralization, nanoleakage, microtensile bond strength |
| 相關次數: | 點閱:90 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
牙科黏著的目標是希望能形成黏著劑與牙齒之間長期緊密穩定的介面,維持邊緣密封以及臨床的耐久性,然而現今的牙科材料所形成的黏著劑混和層(hybrid layer)介面會隨著時間降解而導致樹脂-牙本質黏著介面失敗。仿生再礦化是保護黏著介面完整的一個可能的方法, 旨在模仿自然的礦化過程。磷灰石以微晶形式在膠原蛋白網絡間沉積,可再礦化修復有缺陷的樹脂-牙本質混合層,增強黏著介面耐久性。
最近市面上出現的通用型黏著劑可使用酸蝕沖洗或自酸蝕模式黏著齒質,主要是內含酸性樹脂單體10-甲基丙烯酰氧基癸基二氫磷酸酯(10-MDP),其磷酸鹽基團可鍵結到羥基磷灰石上,形成特殊的分層MDP-Ca結構。本研究的目的是檢視通用型黏著劑所含的10-MDP對於混合層仿生再礦化的可能影響,以及對提升黏著強度、防止黏著介面的降解之效應。
在實驗中,首先以X射線光電子能譜來檢查黏著劑塗層的表面經再礦化溶液浸泡後元素組成的改變。結果顯示,三種通用型黏著劑塗層在再礦化溶液中儲存一個月後,表面鈣含量以CLEARFIL S3 Bond Universal (CSU)黏著劑最高。再以薄膜X光繞射儀檢查黏著劑塗層經再礦化溶液浸泡後結晶的改變。結果顯示,三種通用型黏著劑塗層在再礦化溶液中儲存一個月後,以CSU黏著劑有最明確的氫氧基磷灰石節結晶表現。以銀染的方式檢測浸泡模擬體液和仿生再礦化溶液的通用型黏著劑樹脂-牙本質黏著樣品介面微滲漏的表現,結果在三個月和六個月儲存期後,所有組別的介面都沒有明顯增加微滲漏。另外,樹脂-牙本質黏著樣品在初始及分別儲存在模擬體液與仿生再礦化溶液3個月後,以微拉伸黏著強度測試,並以電子顯微鏡檢查微拉伸斷裂模式的分佈與黏著介面的微觀型態,結果顯示仿生再礦化溶液相較一般模擬體液可促進再礦化的發。由以上結果,所有通用型黏著劑配合酸蝕步驟相較自酸蝕提升黏著強度,其中配合酸蝕沖洗的CSU組別強度測試表現最佳,自酸蝕模式的All-Bond Universal (ABU)組表現最差。
The goal of adhesive procedures is to form and maintain a tight adhesive-dentin interface, marginal sealing, and the stability. Regardless of the advances in dental materials, the hybrid layer in adhesive interfaces still degrades over time. Biomimetic remineralization of the hybrid layer has been proposed as a salvaging strategy, as the deposition of apatite on the denuded collagen network may repair defective resin–dentin interfaces and increased durability.
The recently introduced multi-mode universal adhesives is designed to bond to tooth via the etch-and-rinse or self-etching modes, mostly rely on the acidic resin monomer 10-methacryloyloxy-decyl dihydrogen phosphate (10-MDP). The functional monomer bonds through its phosphate groups to hydroxyapatite and particularly forms a regularly layered MDP-Ca structure. Therefore, this study was aimed to examine the ability of MDP-based universal adhesives in remineralizing hybrid layers, and thus to enhance the bonding and prevent degradation.
In the study, x-ray photoelectron spectroscopy (XPS) was used to examine the elemental composition on the surface of adhesive coatings after soaking in the biomimetic remineralization medium (BRM). The results showed more calcium contents in CLEARFIL S3 Bond Universal (CSU) adhesive after 1-month BRM storage. X-ray diffractometer (XRD) was used to check the surface crystallization of the adhesive coating after immersion in the BRM. Only CSU adhesive showed characteristic peaks at 2θ= 26°, 29°, 32° after 1-month BRM storage. In addition, a nanoleakage test by silver staining did not show significantly increased nanoleakage in interfaces of universal adhesives after 3- or 6-month SBF/BRM storage. Finally, resin–dentin bonding was examined by a microtensile bond strength test immediately after bonding and after 3-month storage in either SBF/BRM. The distribution of fracture modes and microscopic morphology of the adhesive interface were examined by SEM. The results showed that there were remineralizations in all groups after 3-month BRM storage. In conclusion, three universal adhesive used in etch-and-rinse mode are more effectively to enhance bond strength compared to those in self-etch mode. CSU group with etch-and-rinse mode showed the highest bond strength, and the ABU group with the self-etching mode the lowest performance.
[1] J. Perdigao, New developments in dental adhesion, Dent Clin North Am 51(2) (2007) 333-57, viii.
[2] L. Breschi, T. Maravic, S.R. Cunha, A. Comba, M. Cadenaro, L. Tjaderhane, D.H. Pashley, F.R. Tay, A. Mazzoni, Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications, Dent Mater 34(1) (2018) 78-96.
[3] M. Takahashi, M. Nakajima, J. Tagami, D.L. Scheffel, R.M. Carvalho, A. Mazzoni, M. Cadenaro, A. Tezvergil-Mutluay, L. Breschi, L. Tjaderhane, S.S. Jang, F.R. Tay, K.A. Agee, D.H. Pashley, The importance of size-exclusion characteristics of type I collagen in bonding to dentin matrices, Acta Biomater 9(12) (2013) 9522-8.
[4] D.H. Pashley, F.R. Tay, L. Breschi, L. Tjaderhane, R.M. Carvalho, M. Carrilho, A. Tezvergil-Mutluay, State of the art etch-and-rinse adhesives, Dent Mater 27(1) (2011) 1-16.
[5] L. Breschi, A. Mazzoni, A. Ruggeri, M. Cadenaro, R. Di Lenarda, E. De Stefano Dorigo, Dental adhesion review: aging and stability of the bonded interface, Dent Mater 24(1) (2008) 90-101.
[6] P. Spencer, Q. Ye, J. Park, E.M. Topp, A. Misra, O. Marangos, Y. Wang, B.S. Bohaty, V. Singh, F. Sene, J. Eslick, K. Camarda, J.L. Katz, Adhesive/Dentin interface: the weak link in the composite restoration, Ann Biomed Eng 38(6) (2010) 1989-2003.
[7] A. Sezinando, Looking for the ideal adhesive – A review, Revista Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial 55(4) (2014) 194-206.
[8] S. Sauro, D.H. Pashley, M. Montanari, S. Chersoni, R.M. Carvalho, M. Toledano, R. Osorio, F.R. Tay, C. Prati, Effect of simulated pulpal pressure on dentin permeability and adhesion of self-etch adhesives, Dent Mater 23(6) (2007) 705-13.
[9] A. Neves Ade, E. Coutinho, M.V. Cardoso, J. de Munck, B. Van Meerbeek, Micro-tensile bond strength and interfacial characterization of an adhesive bonded to dentin prepared by contemporary caries-excavation techniques, Dent Mater 27(6) (2011) 552-62.
[10] H. Deyhle, O. Bunk, B. Muller, Nanostructure of healthy and caries-affected human teeth, Nanomedicine 7(6) (2011) 694-701.
[11] M. Hashimoto, F. Nagano, K. Endo, H. Ohno, A review: Biodegradation of resin–dentin bonds, Japanese Dental Science Review 47(1) (2011) 5-12.
[12] N. Donmez, S. Belli, D.H. Pashley, F. Tay, Ultrastructural correlates of in vivo/in vitro bond degradation in self-etch adhesives, Journal of dental research 84(4) (2005) 355-359.
[13] C. Chen, L.N. Niu, H. Xie, Z.Y. Zhang, L.Q. Zhou, K. Jiao, J.H. Chen, D.H. Pashley, F.R. Tay, Bonding of universal adhesives to dentine--Old wine in new bottles?, J Dent 43(5) (2015) 525-36.
[14] B. Van Meerbeek, K. Yoshihara, Y. Yoshida, A. Mine, J. De Munck, K.L. Van Landuyt, State of the art of self-etch adhesives, Dent Mater 27(1) (2011) 17-28.
[15] D. Dayan, I. Binderman, G. Mechanic, A preliminary study of activation of collagenase in carious human dentine matrix, Archives of Oral Biology 28(2) (1983) 185-187.
[16] M. Hashimoto, H. Ohno, H. Sano, M. Kaga, H. Oguchi, In vitro degradation of resin–dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy, Biomaterials 24(21) (2003) 3795-3803.
[17] T. Jacobsen, K.-J. Söderholm, Some effects of water on dentin bonding, Dental Materials 11(2) (1995) 132-136.
[18] A. Frassetto, L. Breschi, G. Turco, G. Marchesi, R. Di Lenarda, F.R. Tay, D.H. Pashley, M. Cadenaro, Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability--A literature review, Dent Mater 32(2) (2016) e41-53.
[19] J. Malacarne, R.M. Carvalho, F. Mario, N. Svizero, D.H. Pashley, F.R. Tay, C.K. Yiu, M.R. de Oliveira Carrilho, Water sorption/solubility of dental adhesive resins, Dental Materials 22(10) (2006) 973-980.
[20] E.M. Abdel-Rahman, M.I. Younis, A.H. Nayfeh, Characterization of the mechanical behavior of an electrically actuated microbeam, Journal of Micromechanics and Microengineering 12(6) (2002) 759.
[21] P.M.C. Scaffa, L. Breschi, A. Mazzoni, C.d.M.P. Vidal, R. Curci, F. Apolonio, P. Gobbi, D. Pashley, L. Tjäderhane, I.L. dos Santos Tersariol, Co-distribution of cysteine cathepsins and matrix metalloproteases in human dentin, Archives of oral biology 74 (2017) 101-107.
[22] L. Tjaderhane, F.D. Nascimento, L. Breschi, A. Mazzoni, I.L. Tersariol, S. Geraldeli, A. Tezvergil-Mutluay, M.R. Carrilho, R.M. Carvalho, F.R. Tay, D.H. Pashley, Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins, Dent Mater 29(1) (2013) 116-35.
[23] I.L. Tersariol, S. Geraldeli, C.L. Minciotti, F.D. Nascimento, V. Paakkonen, M.T. Martins, M.R. Carrilho, D.H. Pashley, F.R. Tay, T. Salo, L. Tjaderhane, Cysteine cathepsins in human dentin-pulp complex, J Endod 36(3) (2010) 475-81.
[24] L. Tjaderhane, F.D. Nascimento, L. Breschi, A. Mazzoni, I.L. Tersariol, S. Geraldeli, A. Tezvergil-Mutluay, M. Carrilho, R.M. Carvalho, F.R. Tay, D.H. Pashley, Strategies to prevent hydrolytic degradation of the hybrid layer-A review, Dent Mater 29(10) (2013) 999-1011.
[25] Y. Liu, L. Tjaderhane, L. Breschi, A. Mazzoni, N. Li, J. Mao, D.H. Pashley, F.R. Tay, Limitations in bonding to dentin and experimental strategies to prevent bond degradation, J Dent Res 90(8) (2011) 953-68.
[26] M.R. Carrilho, R.M. Carvalho, E.N. Sousa, J. Nicolau, L. Breschi, A. Mazzoni, L. Tjaderhane, F.R. Tay, K. Agee, D.H. Pashley, Substantivity of chlorhexidine to human dentin, Dent Mater 26(8) (2010) 779-85.
[27] L. Breschi, A. Mazzoni, F. Nato, M. Carrilho, E. Visintini, L. Tjaderhane, A. Ruggeri, Jr., F.R. Tay, S. Dorigo Ede, D.H. Pashley, Chlorhexidine stabilizes the adhesive interface: a 2-year in vitro study, Dent Mater 26(4) (2010) 320-5.
[28] J. Kim, T. Uchiyama, M. Carrilho, K.A. Agee, A. Mazzoni, L. Breschi, R.M. Carvalho, L. Tjaderhane, S. Looney, C. Wimmer, A. Tezvergil-Mutluay, F.R. Tay, D.H. Pashley, Chlorhexidine binding to mineralized versus demineralized dentin powder, Dent Mater 26(8) (2010) 771-8.
[29] J. Zhou, J. Tan, L. Chen, D. Li, Y. Tan, The incorporation of chlorhexidine in a two-step self-etching adhesive preserves dentin bond in vitro, Journal of dentistry 37(10) (2009) 807-812.
[30] S. Imazato, Y. Kinomoto, H. Tarumi, S. Ebisu, F. R. Tay, Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB, Dental Materials 19(4) (2003) 313-319.
[31] S. Imazato, F.R. Tay, A.V. Kaneshiro, Y. Takahashi, S. Ebisu, An in vivo evaluation of bonding ability of comprehensive antibacterial adhesive system incorporating MDPB, Dental Materials 23(2) (2007) 170-176.
[32] S. Mai, C.C. Wei, L.S. Gu, F.C. Tian, D.D. Arola, J.H. Chen, Y. Jiao, D.H. Pashley, L.N. Niu, F.R. Tay, Extrafibrillar collagen demineralization-based chelate-and-rinse technique bridges the gap between wet and dry dentin bonding, Acta Biomater 57 (2017) 435-448.
[33] L. Breschi, P. Martin, A. Mazzoni, F. Nato, M. Carrilho, L. Tjaderhane, E. Visintini, M. Cadenaro, F.R. Tay, E. De Stefano Dorigo, D.H. Pashley, Use of a specific MMP-inhibitor (galardin) for preservation of hybrid layer, Dent Mater 26(6) (2010) 571-8.
[34] R. Seseogullari-Dirihan, M.M. Mutluay, P. Vallittu, D.H. Pashley, A. Tezvergil-Mutluay, Effect of pretreatment with collagen crosslinkers on dentin protease activity, Dent Mater 31(8) (2015) 941-7.
[35] H. Ryou, G. Turco, L. Breschi, F.R. Tay, D.H. Pashley, D. Arola, On the stiffness of demineralized dentin matrices, Dent Mater 32(2) (2016) 161-70.
[36] Z. Zhang, M. Mutluay, A. Tezvergil-Mutluay, F.R. Tay, D.H. Pashley, D. Arola, Effects of EDC crosslinking on the stiffness of dentin hybrid layers evaluated by nanoDMA over time, Dent Mater 33(8) (2017) 904-914.
[37] A. Mazzoni, V. Angeloni, F.M. Apolonio, N. Scotti, L. Tjaderhane, A. Tezvergil-Mutluay, R. Di Lenarda, F.R. Tay, D.H. Pashley, L. Breschi, Effect of carbodiimide (EDC) on the bond stability of etch-and-rinse adhesive systems, Dent Mater 29(10) (2013) 1040-7.
[38] R. Seseogullari-Dirihan, L. Tjaderhane, D.H. Pashley, A. Tezvergil-Mutluay, Effect of ultraviolet A-induced crosslinking on dentin collagen matrix, Dent Mater 31(10) (2015) 1225-31.
[39] J. Malacarne-Zanon, D.H. Pashley, K.A. Agee, S. Foulger, M.C. Alves, L. Breschi, M. Cadenaro, F.P. Garcia, M.R. Carrilho, Effects of ethanol addition on the water sorption/solubility and percent conversion of comonomers in model dental adhesives, Dent Mater 25(10) (2009) 1275-84.
[40] S.E. Jee, J. Zhou, J. Tan, L. Breschi, F.R. Tay, G. Gregoire, D.H. Pashley, S.S. Jang, Investigation of ethanol infiltration into demineralized dentin collagen fibrils using molecular dynamics simulations, Acta Biomater 36 (2016) 175-85.
[41] T.P. Shin, X. Yao, R. Huenergardt, M.P. Walker, Y. Wang, Morphological and chemical characterization of bonding hydrophobic adhesive to dentin using ethanol wet bonding technique, Dent Mater 25(8) (2009) 1050-7.
[42] M. Cadenaro, L. Breschi, F.A. Rueggeberg, M. Suchko, E. Grodin, K. Agee, R. Di Lenarda, F.R. Tay, D.H. Pashley, Effects of residual ethanol on the rate and degree of conversion of five experimental resins, Dent Mater 25(5) (2009) 621-8.
[43] J. Kim, D.D. Arola, L. Gu, Y.K. Kim, S. Mai, Y. Liu, D.H. Pashley, F.R. Tay, Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom-up approach, Acta Biomater 6(7) (2010) 2740-50.
[44] F.R. Tay, D.H. Pashley, Guided tissue remineralisation of partially demineralised human dentine, Biomaterials 29(8) (2008) 1127-37.
[45] Y.K. Kim, L.S. Gu, T.E. Bryan, J.R. Kim, L. Chen, Y. Liu, J.C. Yoon, L. Breschi, D.H. Pashley, F.R. Tay, Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions, Biomaterials 31(25) (2010) 6618-27.
[46] F.R. Tay, D.H. Pashley, Biomimetic remineralization of resin-bonded acid-etched dentin, J Dent Res 88(8) (2009) 719-24.
[47] Y.K. Kim, S. Mai, A. Mazzoni, Y. Liu, A. Tezvergil-Mutluay, K. Takahashi, K. Zhang, D.H. Pashley, F.R. Tay, Biomimetic remineralization as a progressive dehydration mechanism of collagen matrices--implications in the aging of resin-dentin bonds, Acta Biomater 6(9) (2010) 3729-39.
[48] C.Y. Cao, M.L. Mei, Q.L. Li, E.C. Lo, C.H. Chu, Methods for biomimetic remineralization of human dentine: a systematic review, Int J Mol Sci 16(3) (2015) 4615-27.
[49] Y. Liu, N. Li, Y.P. Qi, L. Dai, T.E. Bryan, J. Mao, D.H. Pashley, F.R. Tay, Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly, Adv Mater 23(8) (2011) 975-80.
[50] M.G. Brackett, N. Li, W.W. Brackett, R.J. Sword, Y.P. Qi, L.N. Niu, C.R. Pucci, A. Dib, D.H. Pashley, F.R. Tay, The critical barrier to progress in dentine bonding with the etch-and-rinse technique, J Dent 39(3) (2011) 238-48.
[51] L.N. Niu, W. Zhang, D.H. Pashley, L. Breschi, J. Mao, J.H. Chen, F.R. Tay, Biomimetic remineralization of dentin, Dent Mater 30(1) (2014) 77-96.
[52] J. Kim, R.M. Vaughn, L. Gu, R.A. Rockman, D.D. Arola, T.E. Schafer, K.K. Choi, D.H. Pashley, F.R. Tay, Imperfect hybrid layers created by an aggressive one-step self-etch adhesive in primary dentin are amendable to biomimetic remineralization in vitro, J Biomed Mater Res A 93(4) (2010) 1225-34.
[53] S. Sauro, R. Osorio, T.F. Watson, M. Toledano, Influence of phosphoproteins’ biomimetic analogs on remineralization of mineral-depleted resin–dentin interfaces created with ion-releasing resin-based systems, Dental Materials 31(7) (2015) 759-777.
[54] G. Abuna, V.P. Feitosa, A.B. Correr, G. Cama, M. Giannini, M.A. Sinhoreti, D.H. Pashley, S. Sauro, Bonding performance of experimental bioactive/biomimetic self-etch adhesives doped with calcium-phosphate fillers and biomimetic analogs of phosphoproteins, Journal of dentistry 52 (2016) 79-86.
[55] H.H. Xu, J.L. Moreau, L. Sun, L.C. Chow, Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition, Dent Mater 27(8) (2011) 762-9.
[56] Z. Wu, X. Wang, Z. Wang, C. Shao, X. Jin, L. Zhang, H. Pan, R. Tang, B. Fu, Self-Etch Adhesive as a Carrier for ACP Nanoprecursors to Deliver Biomimetic Remineralization, ACS Appl Mater Interfaces 9(21) (2017) 17710-17717.
[57] Z.Y. Zhang, F.C. Tian, L.N. Niu, K. Ochala, C. Chen, B.P. Fu, X.Y. Wang, D.H. Pashley, F.R. Tay, Defying ageing: An expectation for dentine bonding with universal adhesives?, J Dent 45 (2016) 43-52.
[58] R. Wang, Y. Shi, T. Li, Y. Pan, Y. Cui, W. Xia, Adhesive interfacial characteristics and the related bonding performance of four self-etching adhesives with different functional monomers applied to dentin, J Dent 62 (2017) 72-80.
[59] Y. Yoshida, B. Van Meerbeek, Y. Nakayama, M. Yoshioka, J. Snauwaert, Y. Abe, P. Lambrechts, G. Vanherle, M. Okazaki, Adhesion to and decalcification of hydroxyapatite by carboxylic acids, Journal of dental research 80(6) (2001) 1565-1569.
[60] G. Alex, Universal adhesives: the next evolution in adhesive dentistry, Compend Contin Educ Dent 36(1) (2015) 15-26.
[61] K. Van Landuyt, Y. Yoshida, I. Hirata, J. Snauwaert, J. De Munck, M. Okazaki, K. Suzuki, P. Lambrechts, B. Van Meerbeek, Influence of the chemical structure of functional monomers on their adhesive performance, Journal of dental research 87(8) (2008) 757-761.
[62] B. Fu, X. Sun, W. Qian, Y. Shen, R. Chen, M. Hannig, Evidence of chemical bonding to hydroxyapatite by phosphoric acid esters, Biomaterials 26(25) (2005) 5104-10.
[63] K. Yoshihara, Y. Yoshida, N. Nagaoka, S. Hayakawa, T. Okihara, J. De Munck, Y. Maruo, G. Nishigawa, S. Minagi, A. Osaka, B. Van Meerbeek, Adhesive interfacial interaction affected by different carbon-chain monomers, Dent Mater 29(8) (2013) 888-97.
[64] K. Yoshihara, N. Nagaoka, T. Okihara, M. Kuroboshi, S. Hayakawa, Y. Maruo, G. Nishigawa, J. De Munck, Y. Yoshida, B. Van Meerbeek, Functional monomer impurity affects adhesive performance, Dent Mater 31(12) (2015) 1493-501.
[65] S. Inoue, K. Koshiro, Y. Yoshida, J. De Munck, K. Nagakane, K. Suzuki, H. Sano, B. Van Meerbeek, Hydrolytic stability of self-etch adhesives bonded to dentin, Journal of Dental Research 84(12) (2005) 1160-1164.
[66] V.P. Feitosa, S. Sauro, F.A. Ogliari, A.O. Ogliari, K. Yoshihara, C.H. Zanchi, L. Correr-Sobrinho, M.A. Sinhoreti, A.B. Correr, T.F. Watson, B. Van Meerbeek, Impact of hydrophilicity and length of spacer chains on the bonding of functional monomers, Dent Mater 30(12) (2014) e317-23.
[67] K. Yoshihara, Y. Yoshida, N. Nagaoka, D. Fukegawa, S. Hayakawa, A. Mine, M. Nakamura, S. Minagi, A. Osaka, K. Suzuki, B. Van Meerbeek, Nano-controlled molecular interaction at adhesive interfaces for hard tissue reconstruction, Acta Biomater 6(9) (2010) 3573-82.
[68] V.P. Feitosa, S. Sauro, F.A. Ogliari, J.W. Stansbury, G.H. Carpenter, T.F. Watson, M.A. Sinhoreti, A.B. Correr, The role of spacer carbon chain in acidic functional monomers on the physicochemical properties of self-etch dental adhesives, J Dent 42(5) (2014) 565-74.
[69] V.P. Feitosa, F.A. Ogliari, B. Van Meerbeek, T.F. Watson, K. Yoshihara, A.O. Ogliari, M.A. Sinhoreti, A.B. Correr, G. Cama, S. Sauro, Can the hydrophilicity of functional monomers affect chemical interaction?, J Dent Res 93(2) (2014) 201-6.
[70] D. Fukegawa, S. Hayakawa, Y. Yoshida, K. Suzuki, A. Osaka, B. Van Meerbeek, Chemical interaction of phosphoric acid ester with hydroxyapatite, Journal of Dental Research 85(10) (2006) 941-944.
[71] Y. Yoshida, K. Nagakane, R. Fukuda, Y. Nakayama, M. Okazaki, H. Shintani, S. Inoue, Y. Tagawa, K. Suzuki, J. De Munck, Comparative study on adhesive performance of functional monomers, Journal of dental research 83(6) (2004) 454-458.
[72] H. Iwai, N. Nishiyama, Effect of calcium salt of functional monomer on bonding performance, J Dent Res 91(11) (2012) 1043-8.
[73] Y. Yokota, N. Nishiyama, Determination of molecular species of calcium salts of MDP produced through decalcification of enamel and dentin by MDP-based one-step adhesive, Dent Mater J 34(2) (2015) 270-9.
[74] F.C. Tian, X.Y. Wang, Q. Huang, L.N. Niu, J. Mitchell, Z.Y. Zhang, C. Prananik, L. Zhang, J.H. Chen, L. Breschi, D.H. Pashley, F.R. Tay, Effect of nanolayering of calcium salts of phosphoric acid ester monomers on the durability of resin-dentin bonds, Acta Biomater 38 (2016) 190-200.
[75] T. Yaguchi, Layering mechanism of MDP-Ca salt produced in demineralization of enamel and dentin apatite, Dent Mater 33(1) (2017) 23-32.
[76] Y. Yoshida, K. Yoshihara, N. Nagaoka, S. Hayakawa, Y. Torii, T. Ogawa, A. Osaka, B.V. Meerbeek, Self-assembled Nano-layering at the Adhesive interface, J Dent Res 91(4) (2012) 376-81.
[77] K. Yoshihara, Y. Yoshida, S. Hayakawa, N. Nagaoka, M. Irie, T. Ogawa, K.L. Van Landuyt, A. Osaka, K. Suzuki, S. Minagi, B. Van Meerbeek, Nanolayering of phosphoric acid ester monomer on enamel and dentin, Acta Biomater 7(8) (2011) 3187-95.
[78] Y. Yokota, K.N. Fujita, R. Uchida, E. Aida, N.T. Aoki, M. Aida, N. Nishiyama, Quantitative Evaluation of MDP-Ca Salt and DCPD after Application of an MDP-based One-step Self-etching Adhesive on Enamel and Dentin, J Adhes Dent 18(3) (2016) 205-13.
[79] Y. Yoshida, K. Yoshihara, N. Nagaoka, M. Hanabusa, T. Matsumoto, Y. Momoi, X-ray diffraction analysis of three-dimensional self-reinforcing monomer and its chemical interaction with tooth and hydroxyapatite, Dental Materials Journal 31(4) (2012) 697-702.
[80] F. Tian, L. Zhou, Z. Zhang, L. Niu, L. Zhang, C. Chen, J. Zhou, H. Yang, X. Wang, B. Fu, C. Huang, D.H. Pashley, F.R. Tay, Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives, J Dent Res 95(4) (2016) 380-7.
[81] Y. Yoshida, K. Yoshihara, S. Hayakawa, N. Nagaoka, T. Okihara, T. Matsumoto, S. Minagi, A. Osaka, K. Van Landuyt, B. Van Meerbeek, HEMA inhibits interfacial nano-layering of the functional monomer MDP, J Dent Res 91(11) (2012) 1060-5.
[82] W.L. Rosa, E. Piva, A.F. Silva, Bond strength of universal adhesives: A systematic review and meta-analysis, J Dent 43(7) (2015) 765-76.
[83] I.V. Luque-Martinez, J. Perdigao, M.A. Munoz, A. Sezinando, A. Reis, A.D. Loguercio, Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin, Dent Mater 30(10) (2014) 1126-35.
[84] M.A. Munoz, I. Luque, V. Hass, A. Reis, A.D. Loguercio, N.H. Bombarda, Immediate bonding properties of universal adhesives to dentine, J Dent 41(5) (2013) 404-11.
[85] M.A. Munoz, I. Luque-Martinez, P. Malaquias, V. Hass, A. Reis, N.H. Campanha, A.D. Loguercio, In vitro longevity of bonding properties of universal adhesives to dentin, Oper Dent 40(3) (2015) 282-92.
[86] K. Sai, Y. Shimamura, T. Takamizawa, A. Tsujimoto, A. Imai, H. Endo, W.W. Barkmeier, M.A. Latta, M. Miyazaki, Influence of degradation conditions on dentin bonding durability of three universal adhesives, J Dent 54 (2016) 56-61.
[87] J.H. Kim, S.Y. Chae, Y. Lee, G.J. Han, B.H. Cho, Effects of multipurpose, universal adhesives on resin bonding to zirconia ceramic, Oper Dent 40(1) (2015) 55-62.
[88] Y. Yoshida, S. Inoue, Chemical analyses in dental adhesive technology, Japanese Dental Science Review 48(2) (2012) 141-152.