簡易檢索 / 詳目顯示

研究生: 任依涵
Jen, Yi-Han
論文名稱: 基於冗餘慣性感測器/衛星定位之聯邦整合車載導航系統
The Development of Redundant IMU/GNSS Integrated Navigation System Using a Federated Filter with Different Fusion Strategies for Land Vehicular Navigation Application
指導教授: 江凱偉
Chiang, Kai-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 197
中文關鍵詞: 多 IMU聯邦濾波器慣性導航系統全球衛星定位系統鬆耦合整合緊耦合整合
外文關鍵詞: Multi-IMU, Federated Filter, Inertial Navigation System, Global Navigation Satellite System, Loosely Coupled Integration, Tightly Coupled Integration
相關次數: 點閱:9下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著自駕車(Autonomous Vehicle,AV)技術持續邁向更高等級的自動化,在實際都市環境中達成高精度與高穩定性的定位能力顯得愈加重要。本論文提出一套具備冗餘設計的 IMU/GNSS 整合導航系統,採用聯邦濾波器架構,結合多顆低成本 MEMS 等級 IMU,以提升在各種真實場景下,包括開闊空間、GNSS 遮蔽與干擾環境中的定位精度與穩健性。本研究分析兩種整合方法:聯邦鬆耦合(Loosely Coupled,LC)與增強聯邦緊耦合(Tightly Coupled,TC)。
    相較於僅使用單一 IMU 的傳統鬆耦合架構,該系統透過多 IMU 冗餘設計、聯邦濾波處理與故障檢測排除機制,有效降低 GNSS 失效與慣性漂移對導航表現的影響。實地實驗涵蓋多種都市場景,包括隧道、狹窄巷弄與高樓林立區域。
    實驗結果顯示,聯邦 LC 架構已可有效提升定位穩定性,而強化型聯邦 TC 架構則能在多數 GNSS 干擾環境中達到 3D 定位均方根誤差低於 50 公分,接近「車道內定位」所需的導航精度。在 GNSS 完全失效的情境中,系統亦可維持約 1 公尺的 3D RMSE,且相較於 LC 架構可降低超過 40% 的誤差。
    總結而言,本研究所提出之系統具備可擴展性、高性價比與良好定位精度,適用於低成本自駕平台,展現其於複雜都市環境中部署之潛力與可行性。

    As autonomous vehicle technologies advance, achieving precise and robust positioning in real-world urban environments has become increasingly essential. This thesis proposes a redundant IMU/GNSS integrated navigation system based on a federated filter architecture that utilizes multiple low-cost MEMS IMUs to enhance localization accuracy and reliability across various real-world scenarios, including open-sky, GNSS-denied, and GNSS-challenging conditions. Both proposed federated LC and federated enhanced TC methods are analyzed.
    Unlike conventional LC systems with a single IMU, which are vulnerable to GNSS outages and inertial drift, the proposed architecture integrates multi-IMU redundancy, federated filtering, and fault detection and exclusion mechanisms to ensure robust and consistent performance. Field experiments were conducted in challenging urban environments such as tunnels, narrow alleys, and dense high-rise areas.
    Results show that the federated LC configuration already improves positioning robustness. Furthermore, the federated enhanced TC method achieves the 3D positiion RMSEs below 50 cm in most GNSS-challenging scenarios, approaching the "Where in Lane" accuracy level. In GNSS-denied environments, it maintains a 3D RMSE approximately 1 meters and achieves over 40% error reduction compared to federated LC.
    In summary, this work presents a scalable, affordable, and accurate localization solution suitable for low-cost AV platforms. The system demonstrates strong potential for deployment in complex urban settings, offering high navigation accuracy even under severe GNSS constraints.

    中文摘要 I ABSTRACT II ACKNOWLEDGEMENTS III CONTENT IV LIST OF TABLES VIII LIST OF FIGURES XI CHAPTER 1. INTRODUCTION 1 1.1 Background and Literature Review 1 1.2 Motivation, Objective, and Contribution 5 1.3 Thesis Outline 6 CHAPTER 2. FUNDAMENTALS OF NAVIGATION SYSTEMS 8 2.1 Knowledge of Reference Frames 8 2.1.1 Inertial Frame 8 2.1.2 Earth-Centered Earth-Fixed Frame 9 2.1.3 Navigation Frame 11 2.1.4 Computer Frame 13 2.1.5 Body Frame 14 2.1.6 Vehicle Frame 15 2.2 Global Navigation Satellite Systems (GNSS) 15 2.2.1 Overview of GNSS Positioning 16 2.2.2 GNSS Measurements and Data Preprocessing 19 2.2.3 GNSS Performance and Error Source 23 2.2.4 GNSS Positioning Modes 30 2.3 Inertial Navigation System (INS) 32 2.3.1 Inertial Sensor Error Model 33 2.3.2 Inertial Sensor Calibration 41 2.3.3 Initial Alignment 42 2.3.4 INS Mechanization 43 CHAPTER 3. INS/GNSS INTEGRATION SCHEME 47 3.1 Kalman Filter in Navigation System 47 3.1.1 KF Procedure 49 3.1.2 Inertial Sensor Error State 51 3.2 Error Feedback Schemes 51 3.3 Loosely Coupled (LC) INS/GNSS Integration Scheme 52 3.4 Tightly Coupled (TC) INS/GNSS Integration Scheme 54 3.5 Motion Constraints for Land Vehicles 55 3.5.1 Zero Velocity Update (ZUPT) 56 3.5.2 Zero Integrated Heading Rate (ZIHR) 58 3.5.3 Non-Holonomic Constraint (NHC) 58 CHAPTER 4. MULTIPLE IMU FUSION ARCHITECTURES 60 4.1 Virtual IMU Observation Fusion 60 4.2 Centralized Filter 62 4.3 Federated Filter 63 4.4 Comparison of Architectures 64 CHAPTER 5. PROPOSED METHODOLOGY 65 5.1 Proposed Navigation Unit 65 5.1.1 Hardware Components Overview 65 5.1.2 Time Synchronization 66 5.1.3 Proposed Hardware Architecture 67 5.2 Federated KF Scheme 71 5.3 Federated LC INS/GNSS Navigation Scheme 72 5.4 Federated Enhanced TC INS/GNSS Navigation Scheme 73 5.4.1 Pseudorange Correction Filter 74 5.5 Proposed Master Fusion with Fault Detection and Exclusion (FDE) 78 5.5.1 Least Squares Measurements Equations 79 5.5.2 Least Squares Estimation Procedure 80 5.5.3 Evaluation of FDE Performance 81 5.5.4 Evaluation of Proposed Master Fusion 84 CHAPTER 6. EXPERIMENT RESULTS ANALYSIS AND DISCUSSION 86 6.1 Reference System 86 6.1.1 Evaluation Metrics and Accuracy Assessment Criteria 88 6.1.2 Benchmark Method 88 6.2 Experiment Field and Hardware Setup 89 6.2.1 NCKU Campus 90 6.2.2 Tainan Narrow Streets 92 6.2.3 Highway 8 93 6.2.4 Yongkang Parking Tower 94 6.2.5 Highway 10 Bridge-Shadow Segment 95 6.3 Open-sky Scenario 97 6.3.1 Tainan Open-Sky Road 97 6.3.2 Highway 8 103 6.3.3 Summary of Open-sky Scenario 108 6.4 GNSS-denied Scenario 108 6.4.1 NCKU underground parking lot 108 6.4.2 Yongkang parking tower 116 6.4.3 Summary of GNSS-denied Scenario 124 6.5 GNSS-challenging Scenario 124 6.5.1 NCKU Tree Tunnel 125 6.5.2 NCKU High-Rise Block 132 6.5.3 Tainan Narrow Alley 139 6.5.4 Tainan High-Rise Street 146 6.5.5 Tainan Residential near Park 153 6.5.6 Highway 10 Bridge Shadow 160 6.5.7 Summary of GNSS-challenging Scenarios 167 CHAPTER 7. CONCLUSION AND FUTURE WORK 170 7.1 Conclusion 170 7.2 Future Work 172 REFERENCE 173

    Allan, D. W. (1966). Statistics of Atomic Frequency Standards. Proceedings of the IEEE, 54(2), 221–230. https://doi.org/10.1109/PROC.1966.4634
    Angrisano, A. (2010). GNSS/INS Integration Methods.
    Bancroft, J. B. (2010). Multiple Inertial Measurement Unit Integration for Pedestrian Navigation. The University of Calgary.
    Bancroft, J. B., & Lachapelle, G. (2011). Data Fusion Algorithms for Multiple Inertial Measurement Units. Sensors 2011, Vol. 11, Pages 6771-6798, 11(7), 6771–6798. https://doi.org/10.3390/S110706771
    Braasch, M. (2022). Fundamentals of inertial navigation systems and aiding. Fundamentals of Inertial Navigation Systems and Aiding, 1–394. https://doi.org/10.1049/sbra550e
    Chen, K., Chang, G., & Chen, C. (2021). GINav: a MATLAB-based software for the data processing and analysis of a GNSS/INS integrated navigation system. GPS Solutions, 25(3), 1–7. https://doi.org/10.1007/S10291-021-01144-9/TABLES/2
    Cheng, J., Dong, J., Landry, R., & Chen, D. (2014). A Novel Optimal Configuration form Redundant MEMS Inertial Sensors Based on the Orthogonal Rotation Method. Sensors 2014, Vol. 14, Pages 13661-13678, 14(8), 13661–13678. https://doi.org/10.3390/S140813661
    Conley, R., Cosentino, R., Christopher J. Hegarty, Elliott D. Kaplan, Joseph L. Leva, Maarten Uijt de Haag, & Karen Van Dyke. (2005). Understanding GPS: Principles and Applications (second edition), Chapter 7: Performance of Stand-Alone GPS (2nd ed.). Artech. https://www.globalspec.com/reference/79920/203279/chapter-7-performance-of-stand-alone-gps
    de Alteriis, G., Accardo, D., Conte, C., & Lo Moriello, R. S. (2021). Performance Enhancement of Consumer-Grade MEMS Sensors through Geometrical Redundancy. Sensors 2021, Vol. 21, Page 4851, 21(14), 4851. https://doi.org/10.3390/S21144851
    Donaldo, D., & Benson, B. (1975). A Comparison of Two Approaches to Pure-Inertial and Doppler-Inertial Error Analysis. IEEE Transactions on Aerospace and Electronic Systems, AES-11(4), 447–455. https://doi.org/10.1109/TAES.1975.308106
    El-Sheimy, N. (2006). Inertial Techniques and INS/DGPS Integration, ENGO 623-Course Notes . In Department of Geomatics Engineering, University of Calgary, Canada . https://www.scirp.org/reference/referencespapers?referenceid=629302
    GNSS OEM. (2023, April 9). RTK, PPP and autonomous . https://gnss.store/blog/post/rtk-ppp-and-autonomous.html?srsltid=AfmBOooqlMkurq5dRqQS0wZSZzkv6nuW4BHoD0PIpF_yJIvyTbkonlO6
    Hou, Haiying. (2004). Modeling inertial sensors errors using Allan variance. https://doi.org/10.11575/PRISM/21729
    Jafari, M. (2015). Optimal redundant sensor configuration for accuracy increasing in space inertial navigation system. Aerospace Science and Technology, 47, 467–472. https://doi.org/10.1016/J.AST.2015.09.017
    John W. Betz. (2015). Engineering Satellite‐Based Navigation and Timing. Engineering Satellite‐Based Navigation and Timing. https://doi.org/10.1002/9781119141167
    Joubert, N., Reid, T. G. R., & Noble, F. (2020). Developments in Modern GNSS and Its Impact on Autonomous Vehicle Architectures. IEEE Intelligent Vehicles Symposium, Proceedings, 2029–2036. https://doi.org/10.1109/IV47402.2020.9304840
    Konrad, T., & Abel, D. (2022). Combining the Benefits of Tightly and Loosely Coupled GNSS/INS Integration in UAV Applications: A Two-Stage Filter Approach. Proceedings of the International Technical Meeting of The Institute of Navigation, ITM, 2022-January, 735–741. https://doi.org/10.33012/2022.18172
    Lehmann, R., & Voß-Böhme, A. (2017). On the statistical power of Baarda’s outlier test and some alternative. Journal of Geodetic Science, 7(1), 68–78. https://doi.org/10.1515/JOGS-2017-0008/MACHINEREADABLECITATION/RIS
    Mohammed, Z., Elfadel, I. (Abe) M., & Rasras, M. (2018). Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers. Micromachines 2018, Vol. 9, Page 602, 9(11), 602. https://doi.org/10.3390/MI9110602
    Noureldin, A., Karamat, T. B., & Georgy, J. (2013). Fundamentals of inertial navigation, satellite-based positioning and their integration. Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration, 1–313. https://doi.org/10.1007/978-3-642-30466-8/COVER
    Patel, U. N., & Faruque, I. A. (2022). Multi-IMU Based Alternate Navigation Frameworks: Performance Comparison for UAS. IEEE Access, 10, 17565–17577. https://doi.org/10.1109/ACCESS.2022.3144687
    Petovello, M. G. (2003). Real-time integration of a tactical-grade IMU and GPS for high-accuracy positioning and navigation. https://doi.org/10.11575/PRISM/23031
    Pope, A. J. (1976). The statistics of residuals and the detection of outliers. /view/noaa/30811
    S. Godha, G. Lachapelle, & M.E. Cannon. (2006, September). Integrated GPS/INS System for Pedestrian Navigation in a Signal Degraded Environment. https://www.ion.org/publications/abstract.cfm?articleID=7026
    SAE International. (2021, May 3). SAE Levels of Driving AutomationTM Refined for Clarity and International Audience. https://www.sae.org/blog/sae-j3016-update
    Savage, P. G. (2012a). Strapdown Inertial Navigation Integration Algorithm Design Part 1: Attitude Algorithms. Https://Doi.Org/10.2514/2.4228, 21(1), 19–28. https://doi.org/10.2514/2.4228
    Savage, P. G. (2012b). Strapdown Inertial Navigation Integration Algorithm Design Part 2: Velocity and Position Algorithms. Https://Doi.Org/10.2514/2.4242, 21(2), 208–221. https://doi.org/10.2514/2.4242
    Scherzinger, B. M. (1996). Inertial navigator error models for large heading uncertainty. Record - IEEE PLANS, Position Location and Navigation Symposium, 477–484. https://doi.org/10.1109/PLANS.1996.509118
    Schwarz, K. P., & Wei, M. (2000). INS/GPS Integration for Geodetic Applications: Lecture Notes ENGO 623. Department of Geomatics Eng., The University of Calgary, Calgary, Canada.
    Shin, E.-H. (2005). Estimation techniques for low-cost inertial navigation. https://doi.org/10.11575/PRISM/2386
    Stephenson, S. (2011). Accuracy Requirements and Benchmarking Position Solutions for Intelligent Transportation Location Based Services. https://www.researchgate.net/publication/260000200_Accuracy_Requirements_and_Benchmarking_Position_Solutions_for_Intelligent_Transportation_Location_Based_Services
    Stuart Ferguson. (2019). Precise Positioning Enabled by ST GNSS Receiver and ST IMU. https://www.st.com/content/dam/AME/2019/technology-tour-2019/dallas/presentations/T1S5_Dallas_GNSS_%20IMU_S.Ferguson.pdf
    Subirana, J., Zornoza, J. M. J., & Hernández Pajares, M. (2013). GNSS Data Processing Volume I: Fundamentals and Algorithms (ESA TM-23/1, May 2013). I(May), 238. https://gssc.esa.int/navipedia/GNSS_Book/ESA_GNSS-Book_TM-23_Vol_I.pdf
    Swaminathan, H. B., Sommer, A., Becker, A., & Atzmueller, M. (2022). Performance Evaluation of GNSS Position Augmentation Methods for Autonomous Vehicles in Urban Environments. Sensors 2022, Vol. 22, Page 8419, 22(21), 8419. https://doi.org/10.3390/S22218419
    Trusov, A. A., Prikhodko, I. P., Zotov, S. A., & Shkel, A. M. (2012). High-Q and wide dynamic range inertial MEMS for north-finding and tracking applications. Record - IEEE PLANS, Position Location and Navigation Symposium, 247–251. https://doi.org/10.1109/PLANS.2012.6236888
    ullah, F. (farhat), Imad, M. (Muhammad), Hassan, M. A. (Muhammad), Junaid, H. (Hazrat), Faiza, F. (Faiza), & Ahmad, I. (Izaz). (2020). Navigation System for Autonomous Vehicle: A Survey. Journal of Computer Science and Technology Studies, 2(2), 20–35. https://www.neliti.com/publications/589773/
    Ünsal, D. (2012). ESTIMATION OF DETERMINISTIC AND STOCHASTIC IMU ERROR PARAMETERS. https://hdl.handle.net/11511/54043
    Verma, P., Hajra, K., Banerjee, P., & Bose, A. (2022). Evaluating PDOP in Multi-GNSS Environment. IETE Journal of Research, 68(3), 1705–1712. https://doi.org/10.1080/03772063.2019.1666750
    Williams, N., & Barth, M. (2021). A qualitative analysis of vehicle positioning requirements for connected vehicle applications. IEEE Intelligent Transportation Systems Magazine, 13(1), 225–242. https://doi.org/10.1109/MITS.2019.2953521

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE