簡易檢索 / 詳目顯示

研究生: 張哲豪
Chang, Jhe-Hao
論文名稱: 光電化學法與鈮酸鋰鐵電薄膜製作氮化鋁鎵/氮化鎵互補式金氧半高電子遷移率場效電晶體之研究
Investigation of AlGaN/GaN Complementary Metal-Oxide-Semiconductor High-Electron-Mobility Transistors Fabricated Using Photoelectrochemical Method and LiNbO3 Ferroelectric Film
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 76
中文關鍵詞: 氮化鋁鎵/氮化鎵光電化學法閘極掘入鈮酸鋰互補式金氧半高電子遷移率場效電晶
外文關鍵詞: AlGaN/GaN, photoelectrochemical wet etching, gate-recess, LiNbO3, CMOS-HEMTs
相關次數: 點閱:156下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鋁鎵/氮化鎵半導體之異質接面處將藉由優選c-自發極化(試片表面指向基板)之極化特性,使電子聚集於導帶的不連續面並受量子井位侷限其飄移方向而形成高濃度之二維電子氣(2DEG)通道,此通道擁有高電子遷移率以及高電子飄移速度等特性,更因氮化鎵本身為寬能隙半導體材料,使氮化鋁鎵/氮化鎵之異質結構半導體元件特性表現更能達到高崩潰電場、高溫以及高頻的工作等優勢。在本論文中,我們欲將以此氮化鋁鎵/氮化鎵異質結構製作空乏型(Depletion mode)及增強型(Enhancement mode)之金氧半高電子遷移率場效電晶體(MOS-HEMTs),結合兩種不同形式元件並以共源極反相器(Common source inverter)電路架構下實現空乏型(常開;Normally on)元件與增強型(常關; Normally off)串聯之互補式金氧半高電子遷移率場效電晶體元件(CMOS-HEMTs)。
    在增強型元件的部分,為了降低結構中氮化鋁鎵的極化效應,使得載子通道內電子濃度下降,於提升臨限電壓(Threshold voltage,V_TH)的同時更提升閘極控制能力,將採用光電化學(Photoelectronchemical,PEC)濕式蝕刻法完成閘極掘入結構製作,並透過脈衝雷射沉積法(Pulsed laser deposition technique)製作鈮酸鋰(Lithium niobate,LiNbO3)鐵電薄膜作為閘極氧化層,結合閘極掘入結構與該鐵電薄膜之自發極化特性相輔抵銷氮化鋁鎵/氮化鎵異質結構內之極化效應,達到空乏二維電子氣通道之效用,成功製做出增強型高速電子遷移率電晶體。
    而於空乏型元件中,為使其形成一小電流形式之常開元件,並在共源極反相器電路中形成一負載式電晶體(Load type transistor)的操作模式,我們利用光電化學法進行濕式蝕刻製作閘極掘入結構,降低二維電子氣通道內載子濃度,使臨限電壓值有效地正移至靠近零的位置,同時使該元件仍保持在小電流的電晶體操作特性。
    在不同的空乏型蝕刻深度下,元件將有不同增強型對空乏型之操作電流比值,有別於傳統利用閘極寬長比調變電晶體間電流比例的做法,此一互補式場效電晶體元件將擁有空乏、增強型兩電晶體尺寸面積相等的優勢,藉此而避免元件面積需隨電流比例放大的因素達到總面積相對縮小的特點,並且亦不影響該反相器作動的能力。
    在氮化鋁鎵薄膜經蝕刻後所剩深度分別為12 nm、10 nm及8 nm的負載式空乏型元件下,我們可得其與增強型元件的電流比例分別為6、10以及25倍,並且經由負載線特性、時域輸出波型及輸出輸入轉移曲線等反相器各項特性趨勢中,我們可觀察得知互補式場效電晶體元件在25倍的操作電流比例下將擁有較好的反相器輸出特性,操作於V_DD= 5 V、V_IN = 5 V的條件下,輸出擺幅(Output Swing):4.9 V、雜訊邊際(Noise Margin):〖NM〗_H= 1.9 V、〖NM〗_L= 1.7 V,而當V_OUT=2.5 V (V_DD/2)時其V_IN值已約落於2.5 V(V_DD/2)位置,達到無偏斜反相器的輸出特性。
    而最後我們藉由此蝕刻調變電流比例的做法,成功達到增強與空乏型元件皆以最小線寬的面積尺寸進行製作,完成互補式場效電晶體元件面積尺寸有效地降低、形成尺寸微縮之優勢。

    In this research, the complementary metal-oxide-semiconductor high-electron-mobility transistors (CMOS-HEMTs) were integrated with the AlGaN/GaN Enhancement-mode (E-mode) and Depletion-mode (D-mode) transistors. The AlGaN/GaN HEMTs with the polarization-induced two dimensional electron gas (2DEG) channel were generally fabricated as the D-mode transistors. To fabricate the critical E-mode transistors, the ferroelectric LiNbO3 (LNO) film was deposited as the gate insulator on the photoelectrochemically (PEC) etched gate-recessed structure using a pulsed laser deposition (PLD) system. The simultaneous use of the ferroelectric LNO film and the gate-recessed structure could more effectively compensate the 2DEG channel at the AlGaN/GaN interface for fabricating the E-mode transistors. Besides, to form the unskewd inverter, the current ratio of E/D-mode transistors was adjusted with various etching depths in the AlGaN layer of the load type D-mode transistors. Compared to the typical tuning method, this etching process method was beneficial for scaling down the CMOS-HEMTs owing to the size match between the E/D-mode transistors. Finally, as the input signal was 5 V, the output swing of the resulting CMOS-HEMTs with the E/D-mode transistor current ratio (β) of 25 was 4.9 V, the noise margin high and low were about 1.9 V and 1.7 V respectively. From the voltage transfer curve (VTC), the corresponded V¬IN was about 2.5 V which equaled to VDD/2 as the V¬OUT was 2.5 V, which revealed that the resulting CMOS-HEMTs with the β of 25 could be operated as an unskewed inverter.

    摘要 I Abstract IV 致謝 IX 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 簡介 1 1.1 氮化鋁鎵/氮化鎵高速電子遷移率電晶體 1 1.2 研究動機 2 1.3 論文架構 3 圖表 4 參考文獻 7 第二章 原理與文獻回顧 9 2.1 氮化鋁鎵/氮化鎵異質結構 9 2.1.1 氮化鋁鎵/氮化鎵異質結構之成長 9 2.1.2 二維電子氣(2DEG)之特性 9 2.2 氮化鋁鎵蝕刻原理 10 2.2.1 光電化學(Photoelectrochemical; PEC)濕式蝕刻法 10 2.3 鈮酸鋰鐵電薄膜原理 11 2.3.1 介電材料之極化機制 11 2.3.2 鈮酸鋰薄膜基本性質 12 2.3.2.1 前言 12 2.3.2.2 晶體結構及性質 13 2.3.2.3 基板效應(Substrate effect) 13 2.4 互補式金氧半高電子遷移率場效電晶體 14 2.4.1 前言 14 2.4.2 共源極反相器電路 14 2.4.3 負載式空乏型電晶體元件 15 2.4.4 蝕刻法製作負載式空乏型電晶體 16 圖表 17 參考文獻 24 第三章 元件製程及量測儀器 29 3.1 試片結構 29 3.2 元件製程流程 29 3.2.1 高台隔離製作(Mesa Isolation) 29 3.2.1.1 清潔試片 30 3.2.1.2 微影製程 30 3.2.1.3 金屬擋層蒸鍍 30 3.2.1.4 高台蝕刻 31 3.2.2 硫化表面處理 31 3.2.3 歐姆接觸電極(Ohmic contact) 31 3.2.3.1 微影製程 32 3.2.3.2 金屬蒸鍍 32 3.2.3.3 快速熱退火(Rapid thermal annealing,RTA) : 32 3.2.4 閘極掘入 (空乏型) 33 3.2.4.1 微影製程 33 3.2.4.2 光電化學蝕刻製程 33 3.2.5 氧化層、護佈層製作 33 3.2.5.1 微影製程 34 3.2.5.2 氧化層薄膜沉積 34 3.2.6 閘極掘入 (增強型) 34 3.2.6.1 微影製程 34 3.2.6.2 氧化層蝕刻 34 3.2.6.3 光電化學蝕刻製程 35 3.2.7 氧化層熱處理 35 3.2.8 增強型元件鐵電材料閘極氧化層製作 35 3.2.8.1 舉離層製作 36 3.2.9 閘極及金屬連線製作 36 3.2.9.1 增強型元件閘極製作 36 3.2.9.2 空乏型元件閘極及金屬連線製作 37 3.3 製程及量測儀器 37 3.3.1 脈衝雷射沉積系統(Pulsed laser deposition system, PLD) 37 3.3.2 電子束蒸鍍系統 (Electron-beam evaporation system) 37 3.3.3 磁控式濺鍍系統 (Magnetron Sputter system) 38 3.3.4 DC電流-電壓量測系統 38 3.3.5 AC 輸出-輸入量測系統 38 圖表 40 參考文獻 48 第四章 實驗結果與討論 50 4.1 增強型高電子遷移率場效電晶體(E-mode HEMTs) 50 4.1.1 應用鈮酸鋰閘極氧化層結合閘極掘入結構製作增強型元件 50 4.2 空乏型高電子遷移率場效電晶體(D-mode HEMTs) 51 4.2.1 不同閘極掘入深度之元件直流特性量測 51 4.2.1.1 無閘極偏壓下之汲源極電流-電壓特性量測 51 4.2.1.2 汲源極電流對閘源極電壓(I_DS-V_GS)之特性量測 52 4.2.2 負載式空乏型電晶體 52 4.3 互補式高電子遷移率場效電晶體(CMOS-HEMTs) 53 4.3.1 增強/空乏型電晶體操作電流比例與反相器輸出特性 53 4.3.1.1 電流比例調變與增強/空乏型 DC特性量測 54 4.3.1.2 電流比例調變與互補式場效電晶體 AC特性量測 55 4.3.1.3 最佳輸出擺幅與無偏斜反相器特性 57 4.3.2 蝕刻法調變電流比例以減少尺寸面積 58 4.3.3 負載式空乏型電晶體充電效益 59 圖表 61 參考文獻 74 第五章 結論 75

    第一章
    [1]T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices”, IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481-1483, Aug. 1994.
    [2]張家華, “異質結構AlGaN/GaN金屬接面特性之研究,” 國防大學中正理工學院電子工程研究所碩士論文, 2001.
    [3]L. F. Eastman, V. Tilak, J. Smart, B. M. Green, E. M. Chumbes, R. Dimitrov, H. Kim, O. S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W. J. Schaff, and J. R. Shealy, “Undoped AlGaN/GaN HEMTs for microwave power application,” IEEE Trans. Electron Devices, vol. 48, pp. 479-485, Mar. 2001.
    [4]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoç, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol.48, pp. 450-457, Mar. 2001.
    [5]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P.Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam expitaxy,” J. Appl.Phys., vol. 86, pp. 4520-4526, Oct. 1999.
    [6]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped AlGaN/GaN heterostructures”, J. Appl. Phys., vol. 87, pp.334-344, Jan. 2000.
    [7]H. Morkoc, A. D. Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electronics, vol. 46, pp. 157-202, Fab. 2002.
    [8]R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J. R. Shealy, and L. F. Eastman, “Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam exitaxy and Metalorganic chemical vapor deposition on sapphire,” J. Appl. Phys., vol. 87, pp. 3375-3380, Apr. 2000.
    [9]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-f-ace AlGaN/GaN heterostructures,” J. Appl. Phys, vol. 85, pp. 3222-3233, Mar. 1999.
    [10]M. Micovic, T. Tsen,and M. Hu, “GaN enhancement=depletion-mode FET logic for mixed signal applications,” Electronics Letters 15th, vol. 41 no. 19, Sep. 2005.
    [11]Y. Cai, Z. Cheng, W. C. W. Tang, K. M. Lau and K. J. Chen,“Monolithically Integrated Enhancement/Depletion-Mode AlGaN/GaN HEMT Inverters and Ring Oscillators Using CF4 Plasma Treatment,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp.2223-2230, Sep. 2006.
    第二章
    [1]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, pp. 3222-3233, 1999.
    [2]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, pp. 334-344, 2000.
    [3]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaar, J. S. Speck, and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys., vol. 86, pp. 4520-4526, 1999.
    [4]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, pp. 450-457, 2001.
    [5]M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C,” Appl. Phys. Lett., vol. 66, pp. 1083-1085, Feb. 1995.
    [6]E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer,” Appl. Phys. Lett., vol. 68, pp. 1678-1680, Mar. 1996.
    [7]L. H. Huang, and C. T. Lee, “Investigation and Analysis of AlGaN MOS Devices with an Oxidized Layer Grown Using the Photoelectrochemical Oxidation Method,” J. Electrochem. Soc., vol. 154, pp. H862-H866, Oct. 2007.
    [8]W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 1976.
    [9]W. H. Zachariasen, Skr. Norske Vid-Ada, Oslo, Mat. Naturv. No.4, 1928.
    [10]A. A. Ballman, “Growth of Piezoelectric and Ferroelectric Materials by the CzochraIski Technique,” J. American Ceram. Soc., vol. 48, pp. 112, 1965.
    [11]D. W. Kim, S. H. Lee, and T. W. Noh, “Structural and nonlinear optical properties of epitaxial LiNbO3 films grown by pulsed laser deposition,” Mater. Sci. Eng. B, vol. 56, pp. 251, 1998.
    [12]R. I. Tomov, T. K. Kabadjova, P. A. Atanasov, S. Tonchev, M. Kaneva, A. Zherikhin, and R. W. Eason, “LiNbO3 optical waveguides deposited on sapphire by electric-field-assisted pulsed laser deposition,” Vacuum, vol. 58, pp. 396, 2000.
    [13]H. K. Lam, J. Y. Dai, and H. L. W. Chan, Orientation controllable deposition of LiNbO3 films on sapphire and diamond substrates for surface acoustic wave device application,” J. Cryst. Growth, vol. 268, pp. 144, 2004.
    [14]M. Veithen and Ph. Ghosez, “First-principles study of the dielectric and dynamical properties of lithium niobate,” Phys. Rev. B, vol. 65, pp. 214302, 2002.
    [15]L. Z. Hao, J. Zhu and Y. Liu, S. Wang, H. Zeng, X. Liao, Y. Liu, H. Lei, Y. Zhang, W. Zhang and Yanrong, “Integration and electrical properties of epitaxial LiNbO 3 ferroelectric film on n-type GaN semiconductor,” Thin Solid Films, vol. 520, pp. 3035-3038, 2012.
    [16]P. J. Hansen, Y. Terao, Y. Wu, R. A. York, U. K. Mishra, and J. S. Speck, “LiNbO3 thin film growth on (0001)-GaN,” Journal of Vacuum Science & Technology B., vol. 23, no. 1, pp. 162, 2005.
    [17]L. Z. Hao, J. Zhu and Y. R. Li, “Integration between LiNbO3 ferroelectric film and AlGaN/GaN system,” Materials Science Forum vol. 687, pp. 303-308, 2011.
    [18]K. Nassau, H. J. Levinstein and G.M. Loiacono, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids., vol. 27, pp. 989-996, 1966.
    [19]S. C. Abrahams, J. M. Reddy and J. L. Bernstein, “Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24°C,” J. Phys. Chem. Solids., vol. 27, pp. 997-1012, 1966.
    [20]D. L. Staebler and J. J. Amodei, “Thermally Fixed Holograms in LiNbO3,” Ferroelectrics, vol. 3, pp. 107-113, 1972.
    [21]M. G. Clark, F. J. DiSalvo, A. M. Glass and G. E. Peterson, ” Electronic structure and optical index damage of iron‐doped lithium niobate,” J. Phys. Chem. Solids., vol. 59, no. 12, pp. 6209-6219, 1973.
    [22]S. Tan, T. Gilbert, C. Y. Hung, and T. E. Schlesinger, “Sputter deposited c-oriented LiNbO3 thin films on SiO2,” J. Appl. Phys., vol.79, no. 7, 1996.
    [23]G. Namkoong,K. K. Lee, S. M. Madison, W. Henderson, S. E. Ralph and W. A. Doolittle, “III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy,” Appl. Phys. Lett., vol. 87, pp. 171107, 2005.
    [24]X. Q. Chen, H. Yamada, Y. Terai, T. Horiuchi, K, Matsushige and P. S. Weiss, “Strong substrate effect in local poling of ultrathin ferroelectric polymer films,” Journal of Vacuum Science & Technology B., vol. 353, pp. 259-263, 2005.
    [25]D. A. Hodges, H. G. Jackson, R. A. Saleh, Analysis and Design of digital Integrated Circuits, 3rd, McGraw-Hill Science Engineering, Jul. 2003.
    [26]Y. Cai, Z. Cheng, W. C. W. Tang, K. M. Lau, and K. J. Chen, “Monolithically Integrated Enhancement/Depletion-Mode AlGaN/GaN HEMT Inverters and Ring Oscillators Using CF4 Plasma Treatment,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp 2223-2230, Sep. 2006.
    [27]M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A.Yamada, and N. Hara, “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-k Gate Dielectrics,” IEEE Electron Device Lett. , vol. 31, no. 3, pp 189-191, Mar. 2010.
    第三章
    [1]P. E. Riley, “Plasma etching of aluminum metallizations for ultralarge scale integrated circuits,” J. Electrochem. Soc., vol. 140, pp. 1518-1522, May. 1993.
    [2]S. K. Ghandhi, VLSI fabrication principles, John Wiley & Sons, pp. 635, 1994.
    [3]C. T. Lee, Y. J. Lin, and C. H. Lin, “Nanalloyed ohmic mechanism of TiN interfacial layer in Ti/Al contact to (NH4)2Sx-treated n-type GaN layers,” J.Appl. Phys., vol. 92, pp. 3825-3829, 2002.
    [4]S. J. Lee, and C. R. Crowell, “Parasitic source and drain resistance in high-electron-mobility transistor,” Solid-State Electron., vol. 28, pp.659-668, Jul. 1985.
    [5]Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, Q. Chen, J. W. Yang, and M. A. Khan, “Study of contact formation in AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 71, pp. 1658-1660, Sep. 1997.
    [6]M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkoç, “Low resistance ohmic contacts on wide band-gap GaN,” Appl. Phys. Lett., vol. 64, pp. 1003-1005, Feb. 1994.
    [7]M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-k Gate Dielectrics,” IEEE Electron Device Lett. , vol. 31, no. 3, pp 189-191 Mar. 2010.
    [8]Y. L. Chiou and C. T. Lee, “Band Alignment and Performance Improvement Mechanisms of Chlorine-Treated ZnO-Gate AlGaN/GaN Metal–Oxide–Semiconductor High-Electron Mobility Transistors, ” IEEE IEEE Trans. Electron Devices , vol. 58, no. 11, pp 3869-3876, Nov. 2011.
    [9]J. W. Son, S. S. Orlov, B. Phillips and L. Hesselink, “Pulsed laser deposition of single phase LiNbO3 thin film waveguides,” J. Electroceram., vol. 17, pp. 591-595, 2006.
    [10]S. Higuchi and I. Tsukada, “Pulsed-Laser Deposition of LiNbO3 Thin Films at Low Oxidation Gas Pressure with Pure Ozone,” Jpn. J. Appl. Phys., vol. 42, pp. L1066, 2003.
    [11]J. Gonzalo, C. N. Afonso, J. M. Ballesteros, A. Grosman and C. Ortega, “Li deficiencies in LiNbO3 films prepared by pulsed laser deposition in a buffer gas,” J. Appl. Phys., vol. 82, no. 6, pp. 3129, 1997.
    第四章
    [1]楊昌霖,李清庭,“鈮酸鋰結合光電化學法閘極掘入之增強型金氧半高速電子遷移率電晶體之研究,”國立成功大學微電子所碩士論文, 2014.
    [2]L. H. Huang, and C. T. Lee, “Investigation and Analysis of AlGaN MOS Devices with an Oxidized Layer Grown Using the Photoelectrochemical Oxidation Method,” J. Electrochem. Soc., vol. 154, pp. H862-H866, Oct. 2007.
    [3]N. Weste, D.M. Harris, CMOS VLSI Design, 3rd, Pearson Education, May 2004.
    [4]D. A. Hodges, H. G. Jackson, R. A. Saleh, Analysis and Design of digital Integrated Circuits, 3rd, McGraw-Hill Science Engineering, Jul. 2003.
    [5]Y. Cai, Z. Cheng, W. C. W. Tang, K. M. Lau and K. J. Chen, “Monolithically Integrated Enhancement/Depletion-Mode AlGaN/GaN HEMT Inverters and Ring Oscillators Using CF4 Plasma Treatment,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp.2223-2230, Sep. 2006.

    下載圖示 校內:2020-08-21公開
    校外:2020-08-21公開
    QR CODE