簡易檢索 / 詳目顯示

研究生: 張元哲
Chang, Yuan-Che
論文名稱: 光纖式氧氣感測器之溫度補償研究
Temperature Compensation for Fiber-Optic Oxygen Sensors
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 66
中文關鍵詞: 光纖溶膠凝膠螢光溫度補償氧氣感測器
外文關鍵詞: Fiber-Optic Oxygen Sensor, Luminescence, Sol-Gel Process, Temperature Compensation
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   氧氣感測器在最近幾年被廣泛地應用在各個領域,如:國防工業、隧道工程、環境監控…等。這是由於光纖式氧氣感測器具有多項優點,如:非侵入式、不與氧氣反應、體積小、靈敏度高、反應速度快、具有高度的彈性設計、可在惡劣的環境中進行長時間的監測。由於應用層面的廣泛,因此理想的感測器必須適用於各個操作溫度。
      本實驗使用普遍的合成技術-溶膠凝膠法(sol-gel)合成出微孔薄膜(microporous film),而將螢光指示劑-PtTFPP (Pt(Ⅱ) meso-Tetra (Pentrafluoropheny) Porphine) 侷限於微孔薄膜的孔洞中,再將此薄膜被覆於光纖尖端而製成光纖式氧氣感測器,並校正此感測器於不同溫度下之特性。最後,並提出一簡單之溫度補償之方法,依據此溫度補償方法得出之數據,可以設計出溫度補償機制,而此溫度補償機制將隨溫度的變化並同時進行補償而不需知道量測時的溫度值,使此溫度感測器能夠應用在更廣泛的使用範圍。

      In recent years, the oxygen sensors have been applied in various areas, such as national defense industry, environment monitor, etc. In all of the various types of oxygen sensors, the fiber-optic sensor on optical type is more interesting. The advantages of the fiber-optic sensor are noninvasive, no consume oxygen or participated in any chemical reactions, small size, high sensitivity, high response time, long-term using in abominable environment. Because of the large-scale application, the ideal oxygen sensors have to be applied in the various temperatures usefully.
      In this study, an indicator, Pt(Ⅱ) meso-Tetra (Pentrafluoropheny) Porphine, was trapped in the porous film synthesized by sol-gel processes. The porous xerogels were coated on the end of an optical fiber for sensing. We calibrate the oxygen sensor at various temperatures and build an alternative method for compensating the temperature dependence oxygen sensor. The temperature compensation method varied with temperature, so that, we need no to know the temperature as measuring and apply the sensor at various environment.

    中文摘要........................................ I Abstract....................................... II 誌謝.......................................... III Table of Contents.............................. IV List of Tables......................................... VI List of Figures................................................ VII Chapter 1 Introduction.......................................... 1  1.1 The Motivations of the Research....................... 1  1.2 The History Review of the Oxygen Sensor............... 1  1.3 The Temperature Effect on Oxygen Sensor............... 18 Chapter 2 Basic Theory.......................................... 25  2.1 Sensing Principles.................................... 25  2.2 The Temperature Effect on Sensing Principles.......... 28 Chapter 3 Experimental Setup for Temperature Effect Measurement. 31  3.1 Chemical Background of the Fiber Optic Oxygen Sensor.. 31   3.1.1 Indicator Dye......................................... 31   3.1.2 Sol-Gel Process....................................... 33  3.2 Preparation of the Fiber Optic Oxygen Sensor.......... 34   3.2.1 Chemical Reagents..................................... 34   3.2.2 Sensor Preparation.................................... 34  3.3 Configurations and Principles......................... 35 Chapter 4 Experimental Results of Temperature Effect............ 38  4.1 Absorption Spectrum................................... 38  4.2 Luminescence Emission................................. 39  4.3 Luminescence Characteristics with Temperatures........ 41  4.4 Discussion............................................ 45 Chapter 5 Temperature Compensation for Oxygen Sensors........... 46  5.1 Basic Theory.......................................... 47  5.2 Results............................................... 49  5.3 Discussion............................................ 56 Chapter 6 Conclusions and Suggestions........................... 57  6.1 Conclusions........................................... 57  6.2 Suggestions........................................... 58   6.2.1 Reducing the Temperature Effect....................... 58   6.2.2 Improving the Photochemical Stability................. 58   6.2.3 Developing a Multiplex Sensor System.................. 59 Bibliography................................................... 60 Autobiography.................................................. 66

    Amao, Y., Miyashita, T., and Okura, I., “Platinum tetrakis pentafluorophenyl porphyrin immobilized in polytrifluoroethylmethacrylate film as a photostable optical oxygen detection material,” J. Fluor. Chem., 107, pp.101-106 (2001).

    Baker, G. A., Wenner, B. R., Watkins, A. N., Bright, F. V., “Effects of processing temperature on the oxygen quenching behavior of tris(4,7 '-diphenyl-1,10 '-phenanthroline) ruthenium (II) sequestered within sol-gel-derived xerogel films,” Journal of Sol-Gel Science and Technology, 17, pp.71-82 (2000).

    Carraway, E. R., Demas, J. N., DeGraff, B. A., and Bacon, J. R., ”Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes,” Anal. Chem., 63, pp.337-342 (1991).

    Chu, C. S., Development of Fiber-Optic Oxygen Sensor, Master Thesis of Department of Mechanical Engineering, National Cheng Kung University (2004).

    Coyle, L. M., Gouterman, M., “Correcting lifetime measurements for temperature,” Sens. Actuators B, 60, pp.92-99 (1999).

    Dunbar, R. A., Jordan, J. D., and Bright, F. V., “Development of Chemical Sensing Platforms Based on Sol-Gel Derived Thin Films:Origin of Age vs Performance Trade-Offs,” Anal. Chem., 68, pp.604-610 (1996).

    Gouin, S., Gouterman, M., “Ideality of Pressure-Sensitive Paint. II. Effect of Annealing on the Temperature Dependence of the Luminescence,” Journal of Applied Polymer Science, 77, pp.2805-2814 (2000).

    Gouin, S., Gouterman, M., “Ideality of Pressure-Sensitive Paint. III. Effect of Base-Coat Permeability on the Luminescence Behavior of the Sensing Layer,” Journal of Applied Polymer Science, 77, pp.2815-2823 (2000).

    Gouin, S., Gouterman, M., “Ideality of Pressure-Sensitive Paint. IV. Improvement of Luminescence Behavior by Addition of Pigment,” Journal of Applied Polymer Science, 77, pp.2824-2831 (2000).

    Hartmann, P., Lenier, M.J.P., “Optochemical sensor,” Patent no. US 6,254,829 (2001).

    Hellmich, W., Krenkow, A., Bosch, V. B., Muller, G., Perego, C., Faglia, G., and Sberveglieri, G., “A selective and highly sensitive CO sensor based on RGTO-SnO2 films deposited onto Si micromachined structure,” Proc. Second Asia Conference on Chemical Sensors Xi’an, China, pp.137-141 (1995).

    Jorge, P. A. S., Caldas, P., Esteves Da Silva, J. C. G., Rosa, C. C., Oliva, A. G., Santos, J. L., Farahi, F., “Luminescence-Based Optical Fiber Chemical Sensors,” Fiber and Integrated Optics, 24, pp.201-225 (2005).

    Lakowicz, J. R., Principles of fluorescence spectroscopy, Plenum Press, New York and London, 3rd edn, p257 (1983).

    Lee, S. K., and Okura, I., “Optical Sensor for Oxygen Using a Pirphyrin-dopes Sol-Gel Glass,” Analyst, 122, pp.81-84 (1997).

    Lee, S. K., and Okura, I., “Photostable optical oxygen sensing material: Platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene,” Anal. Comm. 34, pp.185-188 (1997).

    Lee, S. K., and Okura, I., “Porphyrin-doped sol-gel glass as a probe for oxygen sensing,” Anal. Chim. Acta., 342, pp.181-188 (1997).

    Li, X. M., and Wang, K. Y., “Luminescent platinum complex in solid films for optical sensing of oxygen,” Anal. Chim. Acta., 262, pp.27 (1992).

    Lippitsch, M. E., Pusterhofer, J. P., Leniner, M. J. P., and Wolfbeis, O. S., “Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier,” Anal. Chim. Acta., 205, pp.1-6 (1988).

    Liu, S., Shen, H., and Feng, J., “Effects of gas flow-rates on a Clak-type oxygen gas sensor,” Anal. Chim. Acta., 313, pp.89-92 (1995).

    MacCraith, B. D., McDonagh, C. M., O’Keefee, G., Keyes, E. T., Vos, J. G., O’Kelly, B., and McGilp, J. F., ” Fibre optic oxygen sensor based on fluorescence quenching of evanescent-wave excited ruthenium complexs in sol-gel derived porous coatings,” Analyst, 118, pp.385-388 (1993).

    MacCraith, B. D., O’Keefee, G., McDonagh, C. M., and McEvoy, A. K., “LED-based fibre optic oxygen sensor using sol-gel coating,” Electron. Lett., 30, pp.888 -889 (1994).

    Martin, E., Ingremeau, Corazza, O., M., and Billon, M., “A piezoelectric oxygen transducer based on paramagnetic properties: the TOPP sensor,” Sensors and Actuators B, 27, pp.293-296, (1995).

    McEvoy, A. K., McDonagh, C. M. and MacCraith, B. D., “Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complexes immobilized in sol-gel derived porous silica coating,” Analyst, 121, pp.785-788 (1996).

    Murtagh, M. T., Ackley, D. E., and Shahriari, M.R., “Development of a highly sensitive fibre optic O2/DO sensor based on a phase modulation technique,” Electron. Lett., 32, pp.477-479 (1996).

    Ogino, H., and Asakura, K., “Development of a highly sensitive galvanic cell oxygen sensor,” Talanta, 42, pp.305-310 (1995).

    Palma, A. J., L´opez-Gonz´alez, J., Asensio, L. J., Fern´andez-Ramos, M. D., Capit´an-Vallvey, L. F., “Microcontroller-based portable instrument for stabilised optical oxygen sensor,” Sensors and Actuators B, In Press, Corrected Proof, Available online 5 June 2006.

    Papkovsky, D. B., Papkovskaia, N., Smyth, A., and Kerry, J., Ogurtsov, V. I., “Phosphorescent sensor approach for non-destructive measurement of oxygen in packaged foods: optimization of disposable oxygen sensors and their characterization over a wide temperature range,” Anal. Letters, 33, pp.1755-1777 (2000).

    Papkovsky, D. B., Ponomarev, G. V., Trettnak, W., and O’Leary, P., ”Phosphorescent Complexes of Porphrrin Ketones:Optical Properties and Application to Oxygen Sensing,” Anal. Chem., 67, pp. 4112-4117 (1995).

    Sridhar, K. R., and Blanchard, J. A., “Electronic conduction in low oxygen partial pressure measurements using an amperometric zirconia oxygen sensor,” Sensors and Actuators B, 59, pp.60-67 (1999).

    Stehning, C. and Holst, G., “A DSP-based measuring system for temperature compensated fiberoptical oxygen sensors,” Proc. SPIE, 2002.

    Tan, G. L., Wu, X. J., Wang, L. R., Chen, Y. Q., “Investigation for oxygen sensor of LaF3 thin film,” Sensors and Actuators B, 34, pp.417-421 (1996).

    Watlins, A. N., Wenner, B. R., Jordan, J. D., Xu, W. Y., Demas, J. N. and Bright, F. V. B., “Portable, low-cost, solid-state luminescence-based O-2 sensor,” Appl. Spectrosc., 52, pp.750-754 (1998).

    Wolfbeis, O. S., Fiber Optic Chemical Sensors and Biosensors, Vols. 1 and 2, CRC Press, Boca Raton, FL (1991).

    Yeh, T. S., Chu, C. S., and Lo, Y. L., “Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol–gel matrices,” Sensors and Actuators B, In Press, Corrected Proof, Available online 13 March 2006.

    下載圖示 校內:2011-07-26公開
    校外:2011-07-26公開
    QR CODE