簡易檢索 / 詳目顯示

研究生: 邱文輝
Chiu, Wen-Hui
論文名稱: 工業區及鄰近居住區大氣中細懸浮微粒金屬元素汙染源解析及健康危害風險評估
Source Apportionment and Health Risk Assessment of Metallic Elements Containing in Fine Particulate Matters in an Industrial and Neighboring Residential Area
指導教授: 蔡朋枝
Tsai, Perng-Jy
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 152
中文關鍵詞: 細懸浮微粒金屬元素移動式量測平台富集因子法健康危害風險評估
外文關鍵詞: PM2.5, Metallic elements, Mobile measurement, Enrichment factor, Health risk assessment
相關次數: 點閱:179下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣汙染的問題日益嚴重,尤其受工業活動及交通排放等影響甚鉅,其中排放之細懸浮微粒(PM2.5)尤是目前大家最關注的議題。PM2.5內含了許多種的物質,如金屬元素、碳黑、離子、多環芳香烴等,其中金屬元素因鮮少使用直讀式儀器長時間逐時監測,其時間變異掌握困難。又因PM2.5中金屬元素的量測大多於頂樓空氣品質監測站做採樣,空間變異亦難掌握,且所採集到的樣本不足以描述居民於地面上的暴露狀況。因此使用合適之監測技術,以有效描述居民PM2.5暴露之時間空間變異及實際暴露情況為現今重要議題之一。
    本研究以林園工業區及鄰近居住區為研究地點,分為固定式測站及移動式量測平台,採樣時程為2015年7月至2016年4月每日早上(7:00-10:00AM)與晚上(18:00-21:00)採樣,每季採集十四天,採集大氣中之細懸浮微粒及其金屬元素濃度,採樣之數據資料與環保署空氣品質監測站數據建立濃度轉換關係式預測居民實際之暴露狀況,及使用移動式量測平台資料了解汙染物於空間及時間變異狀況。採樣之數據使用富集因子法評估採樣地點金屬元素之來源,正矩陣因子法評估來源貢獻量,最後計算當地居民之致癌及非致癌風險,評估當地居民之健康危害風險。結果顯示四季PM2.5濃度分別為28.9±1.95μg/m3、28.6±2.27μg/m3、23.0±2.61μg/m3、58.7±1.34μg/m3,全年約54%天數濃度高於WHO所訂日平均35μg/m3的標準,CV值介於27.63% -77.16%,代表當地PM2.5於每日之變異程度大,建立之金屬元素濃度轉換關係式R平方約介於0.4-0.6,各季之金屬元素於移動式量測平台之濃度顯著高於固定式量測技術,因此使用傳統之固定式量測技術可能對於評估當地居民細懸浮微粒中金屬元素之暴露濃度有低估的現象產生,CV值於移動式量測平台顯著低於固定式量測技術,因此使用傳統之固定式量測技術資料之變異程度可能較大。空間變異顯示車多路段金屬元素濃度顯著高於車少路段,時間變異顯示白天金屬元素濃度顯著高於夜晚,可能與當地車多路段與白天交通量大造成有關。富集因子法顯示始於人為因素的有Cr, Ni, Cu, Zn, AS, Mo, Cd, Pb,正矩陣因子法顯示主要來源有工業排放、懸浮粉塵、交通排放與海鹽,致癌風險四季分別為春季1.92×10-4 (95%CI: 1.76×10-4-2.14×10-4)、夏季1.08×10-4 (95%CI: 1.04×10-4-1.12×10-4)、秋季1.12×10-4 (95%CI: 1.04×10-4-1.22×10-4)、冬季1.96×10-4 (95%CI: 1.72×10-4-2.30×10-4),非致癌風險四季分別為春季1.52 (95%CI: 1.44-1.62)、夏季1.52 (95%CI: 1.44-1.61)、秋季1.10 (95%CI: 1.02-1.19)、冬季5.18 (95%CI: 4.44-6.26),皆超過可接受風險,致癌風險主要之貢獻元素為V、Cr(VI)、非致癌風險為Ni、Mn。因此本研究發現如果僅使用固定式測站於頂樓進行量測可能會有低估居民健康風險的情況產生。當地可能之金屬來源為工業排放、懸浮粉塵、交通排放與海鹽等因素所產生。當地致癌及非致癌風險皆超過可接受風險值,必須進行可行之風險管理措施。

    This study simultaneously collected data from the stationary platform, mobile platform and EPA air quality monitoring station to establish converting models, compare the obtained exposure profiles of PM2.5 and their metal contents, metal contents for samples collected at different time and season of the above datasets. Samplings were conducted at the Kaohsiung Linyuan Industrial Park and its neighboring residential area using an stationary platform and mobile platform. PM2.5 and their metal contents samplings were conducted at both daytime (7:00-10:00 AM) and nighttime (18:00-21:00PM) for two weeks per season from July 2015 to April 2016. The relationships of the above samplings results and EPA air quality monitoring station data were determined and used to establish a long term exposure data bank. The source apportionment is conducted using the enrichment factor and positive matrix factorization techniques. Finally, excessive cancer and non-cancer risks were calculated to assess health risks posed on residents associated with the above PM2.5 exposures. Results show that concentrations obtained from the mobile platform was significantly higher (p<0.05) than that of the stationary platform. Spatial variations show that concentrations from busy road significantly higher than quiet road. Temporal variation show that concentrations from daytime significantly higher than nighttime. Cr, Ni, Cu, Zn, AS, Mo, Cd, Pb were found with enrichment factors greater than 10 indicating that they belong to anthropogenic sources. Cancer risk of four seasons were found as 1.92×10-4, 1.08×10-4, 1.12×10-4 and 1.96×10-4, respectively. Non cancer risk of four seasons were found as1.52, 1.52, 1.10 and 5.18, respectively. Both estimated risks obviously exceeded the designated acceptable risks. In conclusion, simply using stationary platform data could result in underestimation of the actual exposure and health risk of residents. The source of metal might come from industrial emission, resuspended dust, traffic-related emission and sea salt. Cancer risk and non-cancer risks were found to be unacceptable which suggests that feasible control strategies are needed for the studied area.

    中文摘要 I 英文摘要 II 誌謝 VI 表目錄 X 圖目錄 XII 第一章 前言 1 1-1 研究背景 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1 懸浮微粒之定義與介紹 4 2-2 細懸浮微粒中金屬元素之來源 5 2-3 細懸浮微粒中金屬元素對人類之健康影響 7 2-4 細懸浮微粒中金屬元素之來源辨識及暴露評估技術 10 2-5 細懸浮微粒中金屬元素健康風險評估技術 11 2-6 當前汙染與氣候狀況 13 第三章 研究方法與設備 16 3-1 研究架構 16 3-2 採樣地點與時間 17 3-3 採樣點氣象資料收集 18 3-4 採樣儀器設備 23 3-4-1 鐵氟龍濾紙 (Teflon/Polytetrafluoroethylene filter; PTFE) 23 3-4-2 纖維素酯濾紙 (Mixed Cellulose Esters filters; MCE) 23 3-4-3 個人式環境氣膠微粒採樣器 (Personal Environmental Monitor; PEM) 23 3-4-4 旋風分離器 (Teflon© Coated Aluminum Cyclones) 25 3-4-5 氣膠監視量測儀 (DustTrak) 25 3-5 採樣方法 26 3-5-1 固定式量測技術 26 3-5-2 移動式量測平台 27 3-6 樣本之重量分析 28 3-7 樣本之化學分析 29 3-8金屬元素轉換關係式 32 3-9 汙染源解析 34 3-9-1 富集因子法 34 3-9-2 正矩陣因子 35 3-10 健康危害風險評估 37 3-10-1 增量致癌風險 37 3-10-2 非致癌風險 38 第四章 結果與討論 40 4-1 林園工業區及鄰近居住區細懸浮微粒(PM2.5)濃度 40 4-1-1 細懸浮微粒(PM2.5)季節狀況 40 4-1-2 細懸浮微粒(PM2.5)變異程度 41 4-2 林園工業區及鄰近居住區金屬元素濃度 41 4-2-1 不同採樣方法金屬元素濃度之比較 42 4-2-2 不同採樣方法金屬元素濃度之季節變化 42 4-2-3 不同採樣方式金屬元素濃度變異程度 43 4-3 林園工業區及鄰近居住區細懸浮微粒中金屬元素時間及空間變異 44 4-3-1 空間變異 45 4-3-2 時間變異 46 4-4 林園工業區及鄰近居住區可能汙染來源 47 4-5 林園工業區及鄰近居住區居民健康危害風險評估 50 4-5-1 林園工業區及鄰近居住區居民暴露細懸浮微粒中金屬元素之致癌風險 50 4-5-2 林園工業區及鄰近居住區居民暴露細懸浮微粒中金屬元素之非致癌風險 51 第五章 結論與建議 144 5-1 結論 144 5-2 建議 145 5-3 研究限制 146 第六章 參考文獻 147

    ACGIH. 1999. Particle size-selective sampling for health-related aerosols. Proceedings of the Air Sampling Procedures Committee:2-3.
    Al-Hwaiti M, Al Kuisi M, Saffarini G, Alzughoul K. 2014. Assessment of elemental distribution and heavy metals contamination in phosphate deposits: Potential health risk assessment of finer-grained size fraction. Environmental Geochemistry and Health 36:651-663.
    Almeida SM, Lage J, Fernandez B, Garcia S, Reis MA, Chaves PC. 2015. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry. Science of the Total Environment 521:411-420.
    Angyal A, Kertesz Z, Szikszai Z, Szoboszlai Z. 2010. Study of cl-containing urban aerosol particles by ion beam analytical methods. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms 268:2211-2215.
    Antonini JM, Roberts JR, Schwegler-Berry D, Mercer RR. 2013. Comparative microscopic study of human and rat lungs after overexposure to welding fume. Annals of Occupational Hygiene 57:1167-1179.
    Benoff S, Jacob A, Hurley IR. 2000. Male infertility and environmental exposure to lead and cadmium. Human Reproduction Update 6:107-121.
    Betha R, Pradani M, Lestari P, Joshi UM, Reid JS, Balasubramanian R. 2013. Chemical speciation of trace metals emitted from indonesian peat fires for health risk assessment. Atmospheric Research 122:571-578.
    Bhuiyan MAH, Dampare SB, Suzuki M. 2015. Source apportionment and pollution evaluation of heavy metals in water and sediments of buriganga river, bangladesh, using multivariate analysis and pollution evaluation indices. Environmental Monitoring and Assessment 187:21.
    Cahill TA, Barnes DE, Spada NJ, Lawton JA, Cahill TM. 2011a. Very fine and ultrafine metals and ischemic heart disease in the california central valley 1: 2003-2007. Aerosol Science and Technology 45:1123-1134.
    Cahill TA, Barnes DE, Withycombe E, Watnik M. 2011b. Very fine and ultrafine metals and ischemic heart disease in the california central valley 2: 1974-1991. Aerosol Science and Technology 45:1135-1142.
    Chen LC, Lippmann M. 2009. Effects of metals within ambient air particulate matter (pm) on human health. Inhalation Toxicology 21:1-31.
    Cheng Y, Lee SC, Gu ZL, Ho KF, Zhang YW, Huang Y, et al. 2015. Pm2.5 and pm10-2.5 chemical composition and source apportionment near a hong kong roadway. Particuology 18:96-104.
    Fernandez-Olmo I, Puente M, Montecalvo L, Irabien A. 2014. Source contribution to the bulk atmospheric deposition of minor and trace elements in a northern spanish coastal urban area. Atmospheric Research 145:80-91.
    Ferreccio C, Sancha AM. 2006. Arsenic exposure and its impact on health in chile. Journal of Health Population and Nutrition 24:164-175.
    Gao JJ, Tian HZ, Cheng K, Lu L, Wang YX, Wu Y, et al. 2014. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of beijing, china: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmospheric Environment 99:257-265.
    Gavett SH, Haykal-Coates N, Copeland LB, Heinrich J, Gilmour MI. 2003. Metal composition of ambient pm2.5 influences severity of allergic airways disease in mice. Environmental Health Perspectives 111:1471-1477.
    Geng NB, Wang J, Xu YF, Zhang WD, Chen C, Zhang RQ. 2013. Pm2.5 in an industrial district of zhengzhou, china: Chemical composition and source apportionment. Particuology 11:99-109.
    Gu JX, Du SY, Han DW, Hou LJ, Yi J, Xu J, et al. 2014. Major chemical compositions, possible sources, and mass closure analysis of pm2.5 in jinan, china. Air Quality Atmosphere and Health 7:251-262.
    He KB, Yang FM, Ma YL, Zhang Q, Yao XH, Chan CK, et al. 2001. The characteristics of pm2.5 in beijing, china. Atmospheric Environment 35:4959-4970.
    Helble JJ. 2000. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators. Fuel Processing Technology 63:125-147.
    Hsu CY, Chiang HC, Lin SL, Chen MJ, Lin TY, Chen YC. 2016. Elemental characterization and source apportionment of pm10 and pm2.5 in the western coastal area of central taiwan. Science of the Total Environment 541:1139-1150.
    Huggins FE, Shah N, Huffman GP, Robertson JD. 2000. Xafs spectroscopic characterization of elements in combustion ash and fine particulate matter. Fuel Processing Technology 65:203-218.
    Huston R, Chan YC, Chapman H, Gardner T, Shaw G. 2012. Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in australia. Water Research 46:1121-1132.
    IARC. 2016. Agents classified by the iarc monographs, volumes 1–115.
    Ito K, Mathes R, Ross Z, Nadas A, Thurston G, Matte T. 2011. Fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in new york city. Environmental Health Perspectives 119:467-473.
    Jiang SY, Kaul DS, Yang FH, Sun L, Ning Z. 2015. Source apportionment and water solubility of metals in size segregated particles in urban environments. Science of the Total Environment 533:347-355.
    Kampa M, Castanas E. 2008. Human health effects of air pollution. Environmental Pollution 151:362-367.
    Karaca F, Alagha O, Erturk F, Yilmaz YZ, Ozkara T. 2008. Seasonal variation of source contributions to atmospheric fine and coarse particles at suburban area in istanbul, turkey. Environmental Engineering Science 25:767-781.
    Karnae S, John K. 2011. Source apportionment of fine particulate matter measured in an industrialized coastal urban area of south texas. Atmospheric Environment 45:3769-3776.
    Kuo SC, Li-Ying HB, Tsai CH, Tsai YI. 2007. Characterization of pm2.5 fugitive metal in the workplaces and the surrounding environment of a secondary aluminum smelter. Atmospheric Environment 41:6884-6900.
    Leikauf GD. 2002. Hazardous air pollutants and asthma. Environmental Health Perspectives 110:505-526.
    Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367-371.
    Li F, Huang JH, Zeng GM, Liu WC, Huang XL, Huang B, et al. 2015. Toxic metals in topsoil under different land uses from xiandao district, middle china: Distribution, relationship with soil characteristics, and health risk assessment. Environmental Science and Pollution Research 22:12261-12275.
    Magari SR, Schwartz J, Williams PL, Hauser R, Smith TJ, Christiani DC. 2002. The association of particulate air metal concentrations with heart rate variability. Environmental Health Perspectives 110:875-880.
    Mandal BK, Suzuki KT. 2002. Arsenic round the world: A review. Talanta 58:201-235.
    Manoli E, Voutsa D, Samara C. 2002. Chemical characterization and source identification/apportionment of fine and coarse air particles in thessaloniki, greece. Atmospheric Environment 36:949-961.
    Mantas E, Remoundaki E, Halari I, Kassomenos P, Theodosi C, Hatzikioseyian A, et al. 2014. Mass closure and source apportionment of pm2.5 by positive matrix factorization analysis in urban mediterranean environment. Atmospheric Environment 94:154-163.
    Martinez MA, Caballero P, Carrillo O, Mendoza A, Mejia GM. 2012. Chemical characterization and factor analysis of pm2.5 in two sites of monterrey, mexico. Journal of the Air & Waste Management Association 62:817-827.
    Muller C, Audusseau S, Salehi F, Truchon G, Chevalier G, Mazer B, et al. 2010. Beryllium contamination and exposure monitoring in an inhalation laboratory setting. Toxicology and Industrial Health 26:39-45.
    OHSA. 2002. Osha to study health effects of beryllium. Chemical & Engineering News 80:24-24.
    Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D, et al. 2007. Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in europe. Atmospheric Environment 41:8557-8566.
    Pan YP, Tian SL, Li XR, Sun Y, Li Y, Wentworth GR, et al. 2015. Trace elements in particulate matter from metropolitan regions of northern china: Sources, concentrations and size distributions. Science of the Total Environment 537:9-22.
    Pandey P, Patel DK, Khan AH, Barman SC, Murthy RC, Kisku GC. 2013. Temporal distribution of fine particulates (pm2.5, pm10), potentially toxic metals, pahs and metal-bound carcinogenic risk in the population of lucknow city, india. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 48:730-745.
    Polissar AV, Hopke PK, Paatero P. 1998. Atmospheric aerosol over alaska - 2. Elemental composition and sources. Journal of Geophysical Research-Atmospheres 103:19045-19057.
    Qi L, Zhang YF, Ma YH, Chen MD, Ge XL, Ma Y, et al. 2016. Source identification of trace elements in the atmosphere during the second asian youth games in nanjing, china: Influence of control measures on air quality. Atmos Pollut Res 7:547-556.
    Reff A, Eberly SI, Bhave PV. 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. Journal of the Air & Waste Management Association 57:146-154.
    Rothman KJ, Mosquin PL. 2013. Sparse-data bias accompanying overly fine stratification in an analysis of beryllium exposure and lung cancer risk. Annals of Epidemiology 23:43-48.
    Rowbotham AL, Levy LS, Shuker LK. 2000. Chromium in the environment: An evaluation of exposure of the uk general population and possible adverse health effects. Journal of Toxicology and Environmental Health-Part B-Critical Reviews 3:145-178.
    Sauni R, Linna A, Oksa P, Nordman H, Tuppurainen M, Uitti J. 2010. Cobalt asthma-a case series from a cobalt plant. Occupational Medicine-Oxford 60:301-306.
    Senaratne I, Shooter D. 2004. Elemental composition in source identification of brown haze in auckland, new zealand. Atmospheric Environment 38:3049-3059.
    Shangguan YX, Wei Y, Wang LQ, Hou H. 2016. Sources and distribution of trace elements in soils near coal-related industries. Arch Environ Contam Toxicol 70:439-451.
    Sharma SK, Mandal TK, Jain S, Saraswati, Sharma A, Saxena M. 2016. Source apportionment of pm2.5 in delhi, india using pmf model. Bulletin of Environmental Contamination and Toxicology 97:286-293.
    Soltani N, Keshavarzi B, Moore F, Tavakol T, Lahijanzadeh AR, Jaafarzadeh N, et al. 2015. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (pahs) in road dust of isfahan metropolis, iran. Science of the Total Environment 505:712-723.
    Srivastava A, Gupta S, Jain VK. 2009. Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in delhi. Atmospheric Research 92:88-99.
    Stefaniak AB, Virji MA, Day GA. 2009. Characterization of exposures among cemented tungsten carbide workers. Part i: Size-fractionated exposures to airborne cobalt and tungsten particles. Journal of Exposure Science and Environmental Epidemiology 19:475-491.
    Sunderman FW. 2001. Review: Nasal toxicity, carcinogenicity, and olfactory uptake of metals. Annals of Clinical and Laboratory Science 31:3-24.
    Suslova KG, Sokolova AB, Krahenbuhl MP, Miller SC. 2009. The effects of smoking and lung health on the organ retention of different plutonium compounds in the mayak pa workers. Radiation Research 171:302-309.
    Taylor SR. 1964. Abundance of chemical elements in the continental crust - a new table. Geochimica Et Cosmochimica Acta 28:1273-1285.
    Thorpe A, Harrison RM. 2008. Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment 400:270-282.
    Thurston GD, Ito K, Lall R. 2011. A source apportionment of u.S. Fine particulate matter air pollution. Atmospheric Environment 45:3924-3936.
    USEPA. 2014. Particulate matter (pm) basics. Particulate Matter (PM) Pollution.
    Vincent JH. 2005. Health-related aerosol measurement: Existing and new sampling criteria J Environ Monit 7:1037-1053.
    Walters GI, Moore VC, Robertson AS, Burge C, Vellore AD, Burge PS. 2012. An outbreak of occupational asthma due to chromium and cobalt. Occupational Medicine-Oxford 62:533-540.
    Wang CF, Chang CY, Tsai SF, Chiang HL. 2005. Characteristics of road dust from different sampling sites in northern taiwan. Journal of the Air & Waste Management Association 55:1236-1244.
    Wang GQ, A YL, Jiang H, Fu Q, Zheng BH. 2015. Modeling the source contribution of heavy metals in surficial sediment and analysis of their historical changes in the vertical sediments of a drinking water reservoir. Journal of Hydrology 520:37-51.
    Weller RE, Buschbom RL, Dagle GE, Park JF, Ragan HA, Watson CR. 1996. Hypoadrenocorticism in beagles exposed to aerosols of plutonium-238 dioxide by inhalation. Radiation Research 146:688-693.
    Xue JL, Zhi YY, Yang LP, Shi JC, Zeng LZ, Wu LS. 2014. Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant (changxing county, china). Environmental Science and Pollution Research 21:7698-7707.
    Yang LX, Cheng SH, Wang XF, Nie W, Xu PJ, Gao XM, et al. 2013. Source identification and health impact of pm2.5 in a heavily polluted urban atmosphere in china. Atmospheric Environment 75:265-269.
    Zelikoff JT, Schermerhorn KR, Fang KJ, Cohen MD, Schlesinger RB. 2002. A role for associated transition metals in the immunotoxicity of inhaled ambient particulate matter. Environmental Health Perspectives 110:871-875.
    Zhang YP, Wang XF, Chen H, Yang X, Chen JM, Allen JO. 2009. Source apportionment of lead-containing aerosol particles in shanghai using single particle mass spectrometry. Chemosphere 74:501-507.
    行政院環境保護署. 2015a. 林園空氣品質監測站資料.
    行政院環境保護署. 2015b. 中華民國空氣品質監測報告104年年報. 行政院環境保護署 2:2-70.
    經濟部工業局. 2013. 林園石化工業區鄰近區域居民健康風險評估計畫. 經濟部工業局 2:110.

    無法下載圖示 校內:2022-08-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE