簡易檢索 / 詳目顯示

研究生: 高翔
Kou, Cheong
論文名稱: 應用複合高分子電解質降低固態鋰電池之界面阻抗
Reducing interfacial resistance with composite polymer electrolytes for solid-state lithium batteries
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 鋰電池固態複合高分子電解質正極與固態電解質之界面
外文關鍵詞: lithium battery, solid composite polymer electrolytes, cathode-solid electrolyte interface
相關次數: 點閱:47下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用聚偏氟乙烯系高分子,加入鋰鹽及塑化劑,且混摻陶瓷奈米粒子製備成高離子傳導度的固態複合高分子電解質,並討論混摻Li1.3Al0.3Ti1.7(PO4)3(LATP)的添加比率對於固態複合高分子電解質之傳導度和電池效能的影響。由離子傳導度測試結果發現,混摻LATP能提升固態電解質的傳導度,在60℃下可達2.39×10-3 S cm-1,但若添加量過高,反而會使離子傳導度些微下降,電化學穩定電位窗則可達5.25 V。組裝成鋰金屬半電池進行效能測試,在60℃下,可進行5C快速放電,且仍保有85.6%的電容維持率(相對於0.1C)。此外,藉由混摻固態高分子電解質於磷酸鋰鐵正極,嘗試使正極之活性物與固態電解質形成穩定的鋰離子傳導通道。結果顯示混摻高分子後能促進鋰離子的傳遞,大幅降低界面阻抗,但會減少正極的導電度。而從電池效能測試結果看出,在60℃下的電池效能以混摻10wt%高分子的正極最佳,能夠進行11C快速放電,且放電電容率仍保有86.47%。在室溫(22°C)下,則是混摻20wt%高分子的電池效能較佳,能夠進行3C快速放電,在1C的放電電容率能保有87.02%,其原因為於室溫時離子傳導度提升對於電池效能有更大的提升。以上結果顯示已成功製備出高效能的固態複合高分子電解質,且藉由混摻高分子到磷酸鋰鐵正極中解決了固態電解質高界面阻抗的問題,將此方法應用在鋰電池的製備,可望大幅提升電池效能。

    In this study, polyvinylidene difluoride-based polymer, lithium salt, plasticizer and nano ceramics particle are used to fabricate solid composite polymer electrolytes and how the Li1.3Al0.3Ti1.7(PO4)3 (LATP) content affects the ionic conductivity of the electrolytes and battery performance is investigated. The testing results indicated that with increasing the LATP content, ionic conductivity of the electrolytes can be increased to 2.39×10-3 S cm-1 at 60℃. If excessive LATP is added, the ionic conductivity of the electrolytes will be slightly decreased. The onset potential of electrochemical stability can be up to 5.2 V. The electrolytes also exhibit excellent electrochemical performance with the capacity retention rate up to 85.6% under 5C at 60℃.
    In order to further improve the battery performance, PVDF-based polymer is added into the cathode in order to form conductive channels for lithium ions. The results indicated that the added polymer can improve lithium ion transfer and reduce interfacial resistance, but conductivity of cathode is reduced. By adding polymer into the cathode, the best battery performance can be achieved with the capacity retention up to 86.47% under 11C at 60℃ and at 20wt% polymer with capacity retention rate up to 87.02% under 1C at 22℃. All the above-mentioned properties demonstrate that high efficiency solid composite polymer electrolytes is successfully fabricated and adding polymer into the cathode can reduce the interfacial resistance of solid electrolyte. By applying this method to the fabrication of lithium metal battery, one can significantly improve the battery performance.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 鋰電池簡介 2 1.3 鋰電池工作原理 5 1.4 正極材料 7 1.4.1 磷酸鋰鐵正極材料(LiFePO4) 7 1.4.2 鋰鈷氧化物正極材料(LiCoO2) 8 1.4.3 鋰鎳鈷錳正極材料(LiNiCoMnO2) 9 1.5 負極材料 10 1.6 黏著劑 11 1.7 電解質 12 1.8 研究動機 14 第二章 文獻回顧 15 2.1 高分子電解質 15 2.1.1 固態高分子電解質 17 2.1.2 膠態高分子電解質 19 2.1.3 複合高分子電解質 20 2.2 正極與電解質之界面 22 第三章 實驗 23 3.1 實驗藥品與材料 23 3.2 實驗儀器與設備 24 3.3 樣品製備 25 3.3.1 含不同比率陶瓷分子之固態複合高分子電解質的製備 25 3.3.2 磷酸鋰鐵正極的製備 26 3.3.3 混摻不同比率高分子的磷酸鋰鐵正極的製備 26 3.3.4 鈕扣型電池的組裝 27 3.4 鑑定與分析 27 3.4.1 掃描式電子顯微鏡(scanning electron microscope, SEM) 27 3.4.2 電化學阻抗頻譜法(electrolchemical impedance spectroscope, SEM) 28 3.4.3 離子傳導度測量(ionic conductivity) 29 3.4.4 循環伏安法(cyclic voltammetry, CV) 30 3.4.5 線性掃描伏安法(linear sweep voltammetry, LSV) 30 3.4.6 電子傳導度測量(conductivity) 31 3.4.7 電池效能測試(C-rate Test) 32 3.4.8 電池循環壽命測試(cycle life test) 32 第四章 結果與討論 33 4.1 固態複合高分子電解質 33 4.1.1 無機材料LATP分析 33 4.1.2 離子傳導度分析 35 4.1.3 線性掃描伏安法之電化學穩定性分析 36 4.1.4 鋰金屬電池充放電效能測試 38 4.1.5 鋰金屬電池循環充放電測試 42 4.2 混摻固態電解質之主體高分子於磷酸鋰鐵正極 44 4.2.1 SEM分析 44 4.2.2 循環伏安法分析 45 4.2.3 鋰金屬電池充放電圈數之電化學阻抗分析 46 4.2.4 正極導電度分析 52 4.2.5 鋰金屬電池於高溫(60°C)環境下之充放電效能測試 53 4.2.6 鋰金屬電池於室溫(22°C)環境下之充放電效能測試 57 4.2.7 鋰金屬電池循環充放電測試 62 第五章 結論 66 5.1 固態複合高分子電解質 66 5.2 混摻固態電解質之主體高分子於磷酸鋰鐵正極 66 第六章 參考文獻 68

    1 Tarascon, J-M., and Michel Armand. "Issues and challenges facing rechargeable lithium batteries." Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 171-179, (2011).
    2 Lewis, Gilbert N., and Frederick G. Keyes. "THE POTENTIAL OF THE LITHIUM ELECTRODE." Journal of the American Chemical Society 35, 4, 340-344, (1913).
    3 Cheng, Xin‐Bing, et al. "A review of solid electrolyte interphases on lithium metal anode." Advanced Science 3, 3, 1500213, (2016).
    4 Lin, Dingchang, Yayuan Liu, and Yi Cui. "Reviving the lithium metal anode for high-energy batteries." Nature nanotechnology 12, 3, 194, (2017).
    5 Tikekar, Mukul D., et al. "Design principles for electrolytes and interfaces for stable lithium-metal batteries." Nature Energy 1, 9, 16114, (2016).
    6 Scrosati, Bruno. "History of lithium batteries." Journal of solid state electrochemistry 15, 7-8, 1623-1630, (2011).
    7 Ozawa, Kazunori. "Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system." Solid State Ionics 69, 3-4, 212-221, (1994).
    8 Lithium-Ion Battery Market (By Material Type: Cathode, Electrolytic Solution, Anode, and Others; By Industry Vertical: Electronics, Automotive, Industrial, and Others; By Geography: North America, Europe, Asia-Pacific, and Row) Global Scenario, Market Size, Outlook, Trend and Forecast, 2015-2024, <https://www.variantmarketresearch.com/report-categories/semiconductor-electronics/lithium-ion-battery-market> (2017).
    8 Lee, Hun, et al. "A review of recent developments in membrane separators for rechargeable lithium-ion batteries." Energy & Environmental Science 7, 12, 3857-3886, (2014).
    9 Guyomard, Dominique, and Jean‐Marie Tarascon. "Rocking‐chair or lithium‐ion rechargeable lithium batteries." Advanced Materials 6, 5, 408-412, (1994).
    10 Kim, Hansu, et al. "Metallic anodes for next generation secondary batteries." Chemical Society Reviews 42, 23, 9011-9034, (2013).
    11 Xu, Wu, et al. "Lithium metal anodes for rechargeable batteries." Energy & Environmental Science 7,2, 513-537, (2014).
    12 Wang, Aiping, et al. "Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries." npj Computational Materials 4,1, 15, (2018).
    13 Goodenough, J. B., H. D. Abruna, and M. V. Buchanan. Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2-4, 2007. DOESC (USDOE Office of Science (SC)), 2007.
    14 Goodenough, John B., and Kyu-Sung Park. "The Li-ion rechargeable battery: a perspective." Journal of the American Chemical Society 135, 4, 1167-1176, (2013).
    15 Whittingham, M. Stanley. "Ultimate limits to intercalation reactions for lithium batteries." Chemical reviews 114, 23, 11414-11443, (2014).
    16 Ohzuku, Tsutomu, and Atsushi Ueda. "Solid‐state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells." Journal of The Electrochemical Society 141, 11, 2972-2977, (1994).
    17 Thomas, M. G. S. R., P. G. Bruce, and John B. Goodenough. "Lithium mobility in the layered oxide Li1− xCoO2." Solid State Ionics 17, 1, 13-19, (1985).
    18 Julien, Christian, et al. "Comparative issues of cathode materials for Li-ion batteries." Inorganics 2, 1, 132-154, (2014).
    19 Chen, Zhen, et al. "Hierarchical porous LiNi 1/3 Co 1/3 Mn 1/3 O 2 nano-/micro spherical cathode material: Minimized cation mixing and improved Li+ mobility for enhanced electrochemical performance." Scientific reports 6, 25771, (2016).
    https://www.nature.com/articles/srep25771#supplementary-information (2016).
    20 Lee, Seung Woo, et al. "High-power lithium batteries from functionalized carbon-nanotube electrodes." Nature nanotechnology 5,7, 531, (2010).
    https://www.nature.com/articles/nnano.2010.116#supplementary-information (2010).
    21 Chou, Shu-Lei, et al. "Small things make a big difference: binder effects on the performance of Li and Na batteries." Physical Chemistry Chemical Physics 16, 38, 20347-20359, (2014).
    22 Li, Jing, et al. "Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder." Journal of the electrochemical Society 155, 3, A234-A238, (2008).
    23 Loeffler, Nicholas, et al. "Polyurethane binder for aqueous processing of Li-ion battery electrodes." Journal of the Electrochemical Society 162, 14, A2692-A2698, (2015).
    24 Loeffler, Nicholas, et al. "Performance of LiNi1/3Mn1/3Co1/3O2/graphite batteries based on aqueous binder." Journal of Power Sources 248, 915-922, (2014).
    25 Tran, Binh, et al. "Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode." Electrochimica Acta 88, 536-542, (2013).
    26 Xu, Kang. "Nonaqueous liquid electrolytes for lithium-based rechargeable batteries." Chemical reviews 104, 10, 4303-4418, (2004).
    27 Goodenough, John B., and Youngsik Kim. "Challenges for rechargeable Li batteries." Chemistry of materials 22, 3, 587-603, (2009).
    28 Peng, Yao, et al. Annual Reports on NMR Spectroscopy Vol. 85 (ed Graham A. Webb) 1-26 (Academic Press, 2015).
    29 Armand, Michel. "Polymer solid electrolytes-an overview." Solid State Ionics 9, 745-754, (1983).
    30 Zhang, Heng, et al. "Single lithium-ion conducting solid polymer electrolytes: advances and perspectives." Chemical Society Reviews 46, 3, 797-815, (2017).
    31 Ngai, Koh Sing, et al. "A review of polymer electrolytes: fundamental, approaches and applications." Ionics 22, 8, 1259-1279, (2016).
    32 Zhang, Qingqing, et al. "Recent advances in solid polymer electrolytes for lithium batteries." Nano Research 10, 12, 4139-4174, (2017).
    33 Fenton, D. E. "Complexes of alkali metal ions with poly (ethylene oxide)." polymer 14, 589, (1973).
    34 Xue, Zhigang, Dan He, and Xiaolin Xie. "Poly (ethylene oxide)-based electrolytes for lithium-ion batteries." Journal of Materials Chemistry A 3, 38, 19218-19253, (2015).
    35 Wang, Zhaoxiang, et al. "Competition Between the Plasticizer and Polymer on Associating with Li+ Ions in Polyacrylonitrile‐Based Electrolytes." Journal of The Electrochemical Society 144, 3, 778-786, (1997).
    36 Groce, F., et al. "Synthesis and characterization of highly conducting gel electrolytes." Electrochimica Acta 39, 14, 2187-2194, (1994).
    37 Croce, F., and B. Scrosati. "Interfacial phenomena in polymer-electrolyte cells: lithium passivation and cycleability." Journal of power sources 43, 1-3, 9-19, (1993).
    38 Liu, Xiaochen, et al. "An interpenetrating network poly (diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries." Journal of Materials Chemistry A 5, 22, 11124-11130, (2017).
    39 Choe, H. S., et al. "Preparation and characterization of poly (vinyl sulfone)-and poly (vinylidene fluoride)-based electrolytes." Electrochimica acta 40, 13-14, 2289-2293, (1995).
    40 Song, J. Y., Y. Y. Wang, and C. Cv Wan. "Review of gel-type polymer electrolytes for lithium-ion batteries." Journal of power sources 77, 2, 183-197, (1999).
    41 Stephan, A. Manuel. "Review on gel polymer electrolytes for lithium batteries." European polymer journal 42, 1, 21-42, (2006).
    42 Liu, Xiaochen, et al. "An interpenetrating network poly (diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries." Journal of Materials Chemistry A 5, 22, 11124-11130, (2017).
    43 Gendensuren, Bolormaa, and Eun-Suok Oh. "Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery." Journal of Power Sources 384, 379-386, (2018).
    44 Weston, J. E., and B. C. H. Steele. "Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes." Solid State Ionics 7, 1, 75-79, (1982).
    45 Croce, F., et al. "Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes." Electrochimica Acta 46, 16, 2457-2461, (2001).
    46 Jayathilaka, P. A. R. D., et al. "Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO) 9LiTFSI polymer electrolyte system." Electrochimica acta 47,20, 3257-3268, (2002).
    47 Tarascon, J-M., et al. "Performance of Bellcore's plastic rechargeable Li-ion batteries." Solid State Ionics 86, 49-54, (1996).
    48 Vignarooban, K., et al. "Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide)(PEO) based solid polymer electrolytes." Solid State Ionics 266, 25-28, (2014).
    49 Wang, Wei, and Paschalis Alexandridis. "Composite polymer electrolytes: Nanoparticles affect structure and properties." Polymers 8, 11, 387, (2016).
    50 Zhao, Erqing, et al. "Pechini synthesis of high ionic conductivity Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid electrolytes: The effect of dispersant." Journal of Alloys and Compounds 680, 646-653, (2016).
    51 Chen, Kai, et al. "Enhancing ionic conductivity of Li0. 35La0. 55TiO3 ceramics by introducing Li7La3Zr2O12." Electrochimica Acta 80, 133-139, (2012).
    52 Dumon, Alexandre, et al. "High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet." Solid State Ionics 243, 36-41, (2013).
    53 Tsai, Chih-Long, et al. "Li7La3Zr2O12 interface modification for Li dendrite prevention." ACS applied materials & interfaces 8, 16, 10617-10626 (2016).
    54 Guo, Qingpeng, et al. "New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries." ACS applied materials & interfaces 9, 48, 41837-41844, (2017).
    55 Breuer, Stefan, et al. "Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li1.5 Al0.5Ti1.5(PO4)3." Journal of Materials Chemistry A 3, 42, 21343-21350, (2015).
    56 Takada, Secondary Batteries – Lithium Rechargeable Systems – Lithium-Ion | Electrolytes: Solid Oxide, Encyclopedia of Electrochemical Power Sources, 328-336 (2009).
    57 Yao, Xiayin, et al. "All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science." Chinese Physics B 25, 1, 018802, (2015).
    58 Zeng, Huihui, et al. "Enhanced cycling performance for all-solid-state lithium ion battery with LiFePO4 composite cathode encapsulated by poly (ethylene glycol)(PEG) based polymer electrolyte." Solid State Ionics 320, 92-99, (2018).
    59 Dornbusch, Donald A., et al. "Effects of sonication on EIS results for zinc alkaline batteries." ECS Electrochemistry Letters 2, 9, A89-A92, (2013).
    60 Shi, Xiaojuan, et al. "Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery." Solid State Ionics 325, 112-119, (2018).
    61 Wang, Changhong, et al. "Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes." Nano Energy 48, 35-43, (2018).
    62 Wang, Xiuli, et al. "A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries." Journal of Membrane Science 582, 37-47, (2019).

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE