簡易檢索 / 詳目顯示

研究生: 邱一哲
Chiu, Yi-che
論文名稱: 校舍建築構架式鋼板補強現地試驗與分析
Field Test and Analysis for School Building Retrofitted by Steel-Framing System
指導教授: 邱耀正
Chiou, Yaw-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 212
中文關鍵詞: 耐震評估現地試驗耐震補強校舍建築鋼板補強
外文關鍵詞: pushover, retrofitted, field test, strengthening, school buildings, steel-framing, epoxy-bonded steel plate
相關次數: 點閱:177下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文實驗於一棟老舊RC校舍進行結構補強,以構架式鋼板補強方法提昇其耐震能力。而此補強方式是在原結構弱抗震能力之柱梁構架上包覆鋼板,即於校舍平行走廊方向之窗檯柱補強及左右橫梁補強,規劃補強理念是提高柱在平行走廊方向的抗剪能力,以及上下樓層鋼板之連續性。
    經由靜態單向側推之現地試驗結果顯示,鋼板補強之校舍比未補強校舍的耐震能力,最大強度約提昇了110%,由1444kN提升至3054kN,而抗震消能提昇約2.20倍,顯示其強度與韌性皆明顯上升。此方法不僅施工容易,且不影響結構物之原尺寸及原有功能。於實驗後證明,更確認此補強方式可以提高抗剪能力,所以對於現今的老舊校舍,鋼板補強是一個不錯的補強方式。
    此外,本文使用ETABS對於實驗校舍進行推垮分析與耐震評估,並與實驗曲線作比較,驗證本文所使用之分析方法的正確性。而經由分析結果的呈現,可顯示本文的分析方法對於模擬校舍建築物的強度與耐震行為,有非常好的可靠度。

    This paper presents the results of the experiments and analysis for the aseismatic capability of the existing RC school building which was retrofitted by steel-framing systems. Two specimens which are the prototype and the retrofitted buildings have been tested by monotonic static pushover. The field test results show that the maximum lateral load of the retrofitted building has nearly enhanced 110% as compared to the prototype building. The dissipation of the energy is also 2.20 times bigger than the prototype building. The proposed system is a very strong and ductile strengthening system, and it can provide a large shear capacity. This method also has some advantages such as easy construction and minimum change in the overall size of the structure.
    The school building was analyzed by adopting ETABS software. In order to verify the current seismic evaluation method, the analytic curves was compared to the experimental curves. The results indicate that the proposed analytical method can predict the strength and the actual seismic behavior of school buildings accurately.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究背景與目的 1 1.1.1 研究背景 1 1.1.2 研究目的 3 1.2文獻回顧 4 1.3研究方法 8 1.4 本文研究之基本假設 9 1.5 本文內容與組織 10 第二章 試體規劃與試體製作 12 2.1 試驗規劃 12 2.1.1 關廟國小概況 13 2.1.2 原樣試體介紹 14 2.1.3 待補強試體介紹 15 2.1.4 補強目標 16 2.2 構架式鋼板補強試體設計 16 2.2.1 鋼板補強工法之補強規劃理念 17 2.2.2 RC柱的鋼板結構補強設計 17 2.2.3 RC梁的鋼板結構補強設計 20 2.3 補強使用之材料性質 20 2.3.1 新舊材料的介面接續 21 2.3.1.1 環氧樹脂(epoxy) 21 2.3.1.2 化學錨栓 22 2.3.2 鋼板 23 2.4 構架式鋼板補強設計強度概估 24 2.5 試體製作 26 2.5.1 試體補強施工方法 26 2.5.2 試體補強施工要點 27 2.5.3 試體整理施工過程 28 2.6 量測儀器及試驗方法 29 2.6.1 量測儀器 29 2.6.2 試驗方法 32 2.6.2.1 施力控制 32 2.6.2.2 位移同步 32 第三章 試驗過程與結果討論 34 3.1概述 34 3.2 試驗過程 34 3.2.1 原樣試體之裂縫觀察與破壞情況 36 3.2.2 構架式鋼板補強試體之裂縫觀察與破壞情況 40 3.3 試驗曲線及表格整理 45 3.3.1 實驗數據表格整理 46 3.3.2 試驗曲線 48 3.4 試驗結果 49 3.4.1原樣試體之側力位移關係 50 3.4.2構架式鋼板補強試體之側力位移關係 51 3.5 鋼板補強試體與原樣試體之實驗結果比較 53 3.5.1 耐震性能效益 53 3.5.2 耐震水準效益 58 3.5.3 補強經濟效益 61 3.6 試驗數據修正 61 第四章 推垮分析與試驗比較 64 4.1 概述 64 4.2 塑鉸設定方法 65 4.2.1 RC柱之模擬 65 4.2.2 RC柱之塑鉸設定 68 4.2.3 磚牆之模擬 70 4.3 非線性推垮分析 70 4.4 耐震能力評估方法 73 4.4.1 容量震譜法(Capacity Spectrum Method) 73 4.4.2 破壞地表加速度 74 4.4.3 耐震性能設計準則 75 4.5 鋼板補強之模擬方法 77 4.6 分析流程 80 4.6.1 模型建立流程 80 4.6.2 推垮分析流程 82 4.7 分析與試驗結果比較 84 4.7.1原樣試體 85 4.7.2 構架式鋼板補強試體 87 4.7.3補強試體於補強前後之試體分析結果比較 90 4.8 耐震能力設計準則之結果討論 91 4.8.1原樣試體 91 4.8.2 構架式鋼板補強試體 92 4.9結果討論 94 4.9.1 容量曲線 94 4.9.2 破壞機制 95 4.9.3 耐震性能設計目標之準則 96 第五章 結論與建議 98 5.1 結論 98 5.2 建議 99 參考文獻 101 附表 107 附圖 127 附錄 201 自述…………………212

    ACI Committee 318, Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute, Farmington Hills, MI
    (2005).
    Adhikary, B.B., Mutsuyoshi, H., “Shear Strengthening of RC Beams with Web-Bonded Continuous Steel Plates,” Construction and Building Materials 20, pp. 296-307 (2006).
    Alex, L., Tchao, A., and Yves, D., “Influence of the Adhesive Thickness and Steel Plate Thickness on the Behaviour of Strengthened Concrete Beams,” Journal of Adhesion Science and Technology 18, Vol. 14, No. 13 , pp. 1639-1656 (2000).
    American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, ASCE 7-95 (1995).
    Arslan, G., Sevuk, F., Ekiz, I., “Steel Plate Contribution to Load-Carrying Capacity of Retrofitted RC Beams,” Construction and Building Materials 22, pp.143-153 (2008)
    ASTM A36, Standard Specification for Carbon Structural Steel, American Society for Testing and Materials, Vol. 01.04 (2008).
    ASTM D695, ASTM D695 - 02a Standard Test Method for Compressive Properties of Rigid Plastics, American Society for Testing and Materials, Vol. 08.01 (2008).
    ATC-40, Seismic evaluation and retrofit of concrete buildings. Report No. SSC 96-01, Applied Technology Council (1996).
    AWS D1.1/D1.1M, 2006 Structural Welding Code Steel, American Welding Society (2006).
    Barnes, R.A., Baglin, P.S., Mays, G.C., and Subedi, N.K., “External Steel Plate Systems for Shear Strengthening of Reinforced Concrete Beams,” Engineering Structures 23, pp. 1162-1176 (2001).
    CSI, “ETABS:Extended 3D analysis of building systems, Nonlinear Version 8.5.4,” User’s Manual, Computer and Structures, Inc., Berkeley, California (1999).
    Elwood, K.J., and Moehle, J.P., “Axial Capacity Model for Shear Damaged Columns,” ACI Structural Journal, Vol. 102, No. 4, pp. 578-587 (2005).
    Elwood, K.J., and Moehle, J.P., “Drift Capacity of Reinforced Concrete Columns with Light Transverse Reinforcement,” Earthquake Spectra, Vol. 21, No. 1, pp. 71-89 (2005).
    FEMA 273, NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C. (1997).
    FEMA 274, NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C. (1997).
    Griffith, M.C., Wu, Y.F., and Oehlers, D.J., “Behaviour of Steel Plated RC Columns Subject to Lateral Loading,” Advances in Structural Engineering 16, Vol. 8, No. 4 , pp. 333-348 (2005).
    Mohamed Ali, M.S., Oehlers, D.J., and Bradford, M.A., “Debonding of Steel Plates Adhesively Bonded to the Compression Faces of RC Beams,” Construction and Building Materials 19, pp. 413-422 (2005)
    Sezen, H., and Moehle, J.P., “Shear Strength Model for Lightly Reinforced Concrete Columns,” Journal of Structural Engineering, ASCE, Vol. 130, No. 11, pp. 1692-1703 (2004).
    Uy, B., “Strength of Reinforced Concrete Columns Bonded with External Steel Plates,” Magazine of Concrete Research, University of New South Wales, Vol. 54, No. 1, pp. 61-76, February (2002).
    Xiao, Y., and Wu, H., “Retrofit of Reinforced Concrete Columns Using Partially Stiffened Steel Jackets,” Journal of Structural Engineering, ASCE, Vol. 129, No. 6, June (2003)
    內政部,「建築技術規則」,台北 (2008)。
    內政部,「建築物耐震設計規範及解說」,台北 (2006)。
    江文卿,「雲林口湖國小RC翼牆補強」,2007校舍建築耐震補強研討會論文集,第19~31頁,2007年7月16日。
    江文卿、邱聰智、鍾立來、黃世建,「花蓮縣新城國中校舍結構現地實驗」,中華民國第八屆結構工程研討會論文摘要集,南投,第316頁 (2006)。
    何象鏞,「含牆鋼筋混凝土結構側推分析之研究」,國立中央大學土木研究所博士論文,王仲宇教授指導 (2007)。
    杜怡萱、黃世建、江文卿,「台灣典型RC校舍現地試驗與耐震評估分析」,中華民國第八屆結構工程研討會論文摘要集,南投,第342頁 (2006)。
    邱聰智、鍾立來、簡文郁、葉勇凱、杜怡萱、蕭輔沛、林金祿,「後甲國中耐震補強試驗及其評估」,國科會研究報告 (2004)。
    翁元滔、林克強、黃世建、邱聰智,「桃園縣瑞埔國小校舍耐震性能現地試驗—標準構架試體擬動態與反覆側推試驗」,國家地震工程研究中心,報告編號:NCREE-08-004 (2008)。
    高健章、陳清泉、蔡益超,「磚牆加強之鋼筋混凝土構架耐震能力試驗研究(二)」,行政院國家科學委員會,防災科技研究報告74-31號 (1985)。
    高啟洲,「非韌性鋼筋混凝土樑柱內接頭補強之研究」,國立中央大學土木工程學研究所碩士論文,王勇智教授指導,民國91年 (2002)。
    國家地震工程研究中心,1999年9月21日台灣中部集集地震初步勘災報告(二),報告編號:NCREE-99-031 (1999)。
    張瑜晏,「以容量震譜為基礎之建築物耐震能力詳細評估補助系統之建置與應用」,國立台灣大學土木研究所碩士論文,謝尚賢教授指導 (2004)。
    許茂雄、葉祥海、劉玉文、陳義宏、陳奕信、杜怡萱,「集集地震鋼筋混凝土建築物震害原因初步檢討」,中華民國結構工程季刊,第十四卷,第三期,第71-90頁 (1999)。
    連冠華,「校舍隔間磚牆增設複合柱補強效益之推垮分析及試驗驗證」,國立台灣大學土木工程學研究所碩士論文,鍾立來、吳賴雲教授指導,民國95年 (2006)。
    陳明生,「紅磚、砂漿與其介面之基本力學性質研究」,國立成功大學建築研究所碩士論文,許茂雄教授指導 (1994)。
    陳奕信,「含磚牆RC建築結構之耐震診斷」,國立成功大學建築研究所博士論文,許茂雄教授指導 (2003)。
    曾至堅,「低矮型校舍耐震能力詳細評估方法之研究」,國立成功大學土木研究所碩士論文,邱耀正教授指導 (2007)。
    曾凱瀚,「磚礅與磚牆基本力學性質試驗研究」,國立成功大學建築研究所碩士論文,許茂雄、蔡萬傳教授指導 (1994)。
    楊斯如,「學校建築結構耐震型為詳細評估」,國立台灣大學土木工程研究所碩士論文,蔡益超教授指導 (2003)。
    葉勇凱、蕭輔沛、邱聰智,「校舍結構耐震能力提升之技術與試驗驗證」,1906梅山地震百週年紀念研討會,嘉義 (2006)。
    蕭輔沛、葉勇凱、黃世建,「校舍耐震補強現地試驗成果研討會論文集-柱載重重分配試驗」,國家地震工程研究中心,報告編號:NCREE-08-001,第113~124頁(2008)。
    蘇進國,「以結構性能為基準之房屋建築耐震能力評估」,國立台北科技大學土木與防災研究所碩士論文,宋裕祺教授指導 (2003)。

    下載圖示 校內:立即公開
    校外:2008-08-25公開
    QR CODE