簡易檢索 / 詳目顯示

研究生: 鄭又瑋
Cheng, Yu-Wei
論文名稱: 建立表現型抗體資料庫平台篩選抑制腸病毒A71型之抗體並分析其特性
Characterization of an antibody identified from a phenotypic directed screening platform against enterovirus-A71 infection
指導教授: 王貞仁
Wang, Jen-Ren
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 87
中文關鍵詞: 腸病毒A71 型抗病毒單鏈抗體重組抗體α-烯醇酶
外文關鍵詞: Enterovirus A71 (EV-A71), Antivirus, Single chain variable fragment (scFv), Recombinant antibody, α-enolase (ENO1)
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸病毒A71 型(EV-A71)屬於微小病毒科中的腸病毒屬,為一神經趨性的病毒,易於嬰幼兒產生感染症狀,其症狀從輕微至嚴重皆有可能發生,包括常見的手足口症、疱疹性咽峽炎、無菌性腦膜炎至嚴重的腦幹腦炎、肺水腫、肺出血或是其他嚴重神經相關病症及死亡等。雖然有幾件疫苗已經開發並完成臨床測試,但截至目前為止,仍未有疫苗上市後之評估報告。除此之外,目前也尚未有一可針對腸病毒A71 型專一性的抗病毒藥物,可以有效的抑制病毒感染。因此於本篇研究中,則是希望可以透過抗體篩選資料庫平台,找出一抗病毒抗體,可以做為治療並避免發展成嚴重神經相關疾病。我們藉由具有較高抗腸病毒A71型抗體效價的自願者之周圍單核球細胞遺傳物質去氧核醣核酸(Deoxyribonucleic acid, DNA),放大其抗體重鏈(heavy chain)及輕鏈(light chain)之可變區域(variable region)之基因序列,成功構築出人源單鏈抗體資料庫。並將此資料庫系統表現於哺乳類細胞株中,並藉由致死劑量之病毒感染,從存活的細胞中找到並放大出其表現的單鏈抗體基因。於本研究中,我們篩選出一候選單鏈抗體株scFv07,有表現此單鏈抗體之細胞可抑制EV-A71病毒之感染,使其病毒抗原表現量顯著降低。此外,我們亦將此單鏈抗體再透過基因工程重組成完整抗體,並發現具此抗體表現之細胞,能大幅降低病毒感染所造成之細胞凋亡。進一步,我們更發現宿主蛋白α-烯醇酶(α-enolase)為其專一標的,且於腸病毒A71型感染病患之血清中發現抗α-烯醇酶自體抗體之存在。最後,於動物實驗中,發現在腦部組織之核酸放大及染色結果顯示,此一專一性抗體可降低病毒RNA以及神經相關之病理現象,並且於此動物感染模式中,提升了小鼠存活率。總結於此研究中,我們建構了一於細胞內進行表現及透過感染模式直接篩選抗病毒單鏈抗體之人源資料庫,並透過此平台篩選出可有效抑制腸病毒A71型感染之重要候選者Clone 07。透過候選者之特性分析,探討其抗病毒機制或功能上所扮演的角色,未來期將可以應用於臨床治療上,有效抑制病毒感染,避免感染者發展成致命或不可復原的神經破壞相關疾病。

    Enterovirus A71 (EV-A71) belongs to Enterovirus genus in Picornaviridae family. It is a neurotropic virus which may cause mild to severe neurological complications, especially in infant and children. The clinical manifestations include hand-foot-and-mouth disease, herpangina, aseptic meningitis, brain stem encephalitis, pulmonary edema/hemorrhage, and other severe neurological diseases. Although there are some clinical vaccine trials undergoing and approved, the postmarketing surveillance is still unavailable. Besides, there is also no antiviral drugs against EV-A71. Therefore, in this study, we aim to find the antiviral agent or strategy for treatment, preventing the disease progression to severe neurological complications. We successfully constructed a human single chain variable fragment (scFv) library expressed in mammalian cells and found the scFv expressed in survival cells after infection with lethal dose of viruses. After panning and screening we found one clone (clone07) which can inhibit the replication of EV-A71 when expressed intracellularly before infection in contrast to non-scFv expressed cells. We analyzed the sequence of complementarity-determining regions (CDRs) in variable region of heavy chain (VH) and light chain (VL), and expressed the scFv (scFv07) and recombinant intact antibody (07-human IgG1) to confirm the ability of viral inhibition. We identified that the host protein α-enolase (ENO1) is the target of our candidate antibody through immunoprecipitation assay, and ENO1 autoantibody can also be found in EV-A71 patient sera. Furthermore, we examined the antiviral effects in vivo. We found that 07-human IgG1 treatment significantly decreased the viral RNA and the level of neural pathology in brain tissue. In mouse model, it can also increase the survival rate after virus challenge. Collectively, through a promising intracellular scFv library expression and screening system, we found a potential scFv/antibody sequence which targets host protein and can inhibit the infection of EV-A71. The results indicate that the usage and application of this antibody may offer a potential treatment against EV-A71 infection.

    Chinese Abstract I English Abstract III Table of Contents V List of Figures X List of Appendix XII 1. Introduction 1 1.1. EV-A71 genome and structure 1 1.2. EV-A71 epidemiology in Taiwan and other countries 2 1.3. EV-A71 clinical manifestations 2 1.4. EV-A71 infection and antiviral strategy 3 1.4.1. Virus infection and receptor 3 1.4.2. Innate immunity response 5 1.4.3. Interactions between host and virus 6 1.4.4. Antivirus strategy 7 1.4.5. Vaccine development 8 1.5. Single chain variable fragment (scFv) and screening library 9 1.6. α-enolase (ENO1) 10 2. Specific Aims and Experimental Designs 12 3. Materials and Methods 14 3.1. Materials 14 3.1.1. Antibodies and Proteins 14 3.1.2. Reagents 15 3.1.3. Plasmids 17 3.1.4. Consumables and devices 18 3.2. Methods 18 3.2.1. Cells and viruses 18 3.2.2. Construction of human scFv library 19 3.2.3. scFv library expression and biopanning 19 3.2.4. Cell viability assay 20 3.2.5. Analysis of VH and VL gene sequence 20 3.2.6. Expression of specific scFv and intact antibody in mammalian cells 20 3.2.7. Examination of apoptosis after transient expression of intact recombinant antibody and viral infection by flow cytometry 21 3.2.8. Viral growth inhibition assay in conjunction with ELISA detection 21 3.2.9. Virus binding assay 22 3.2.10. Surface plasmon resonance (SPR) binding analysis 23 3.2.11. EV-A71 infected ICR suckling mouse model 23 3.2.12. Detection of RNA expression level by quantitative real-time PCR 24 3.2.13. Histopathology examination of animal tissue 24 4. Results 25 4.1. Establishment and expression of scFv library in mammalian cells to screen the candidates against EV-A71 infection 25 4.1.1. Scheme of mammalian cell display vector structure 25 4.1.2. Construction of scFv library in RD cells 25 4.1.3. Design of biopanning procedure against EV-A71 infection in RD cells 26 4.1.4. Biopanning of human scFv against EV-A71 infection in RD cells 26 4.1.5. ScFvs from biopanning recover EV-A71 infected RD cell viability 26 4.2. Characterization of the function and the target of scFv and intact recombinant antibody 27 4.2.1. Construction and expression of scFv07 in mammalian cells 27 4.2.2. Intracellular scFv07 reduces EV-A71 replication 28 4.2.3. Intracellular scFv07 shows no colocalization with EV-A71 structural protein 28 4.2.4. E. coli expressed scFv07 cannot inhibit EV-A71 replication 28 4.2.5. Expression and purification of intact 07-IgG1 in 293 system 29 4.2.6. 07-IgG1 reduces EV-A71 induced apoptosis and viral replication 29 4.2.7. Optimization of 07-IgG1 in 293 expression system 30 4.2.8. Characterization of 07-IgG1 using EV-A71 particles and infected cell lysate 30 4.2.9. Characterization of 07-IgG1 using Mass spectrum identification 31 4.2.10. ENO1 antibody level in EV-A71 patients’ sera 31 4.2.11. Investigation of the role of ENO1 during EV-A71 infection in cells 32 4.2.12. Effect of ENO1 and 07-IgG1 in EV-A71 viral binding 32 4.3. Examination of the antiviral effects of candidate antibody in vivo 33 4.3.1. Scheme of the experimental design using 6-days-old ICR suckling mice 33 4.3.2. Physiological effects of 07-IgG1 in animal model 33 4.3.3. Viral replication and ENO1 mRNA levels in animal model 34 4.3.4. Histological effects of 07-IgG1 in animal model 34 5. Discussion 36 5.1. Phenotypic directed screening platform 36 5.2. Host factors involved in EV-A71 infection 37 5.3. The biological function a of ENO1 and its role in EV-A71 infection 39 5.4. ENO1 autoantibody 41 5.5. ENO1 as a target for therapeutics 42 6. Reference 45 7. Figures and figure legends 58 8. Appendix 84

    Aaronson, R. M., Graven, K. K., Tucci, M., McDonald, R. J., & Farber, H. W. (1995). Non-neuronal enolase is an endothelial hypoxic stress protein. J Biol Chem, 270(46), 27752-27757. doi:10.1074/jbc.270.46.27752

    Ahmad, Z. A., Yeap, S. K., Ali, A. M., Ho, W. Y., Alitheen, N. B., & Hamid, M. (2012). scFv antibody: principles and clinical application. Clin Dev Immunol, 2012, 980250. doi:10.1155/2012/980250

    Akisawa, N., Maeda, T., Iwasaki, S., & Onishi, S. (1997). Identification of an autoantibody against alpha-enolase in primary biliary cirrhosis. J Hepatol, 26(4), 845-851. doi:10.1016/s0168-8278(97)80251-6

    Andris-Widhopf, J., Steinberger, P., Fuller, R., Rader, C., & Barbas, C. F., 3rd. (2011). Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences. Cold Spring Harb Protoc, 2011(9). doi:10.1101/pdb.prot065573

    Ang, L. W., Koh, B. K., Chan, K. P., Chua, L. T., James, L., & Goh, K. T. (2009). Epidemiology and control of hand, foot and mouth disease in Singapore, 2001-2007. Ann Acad Med Singapore, 38(2), 106-112.

    Bae, S., Kim, H., Lee, N., Won, C., Kim, H. R., Hwang, Y. I., Song, Y. W., Kang, J. S., & Lee, W. J. (2012). alpha-Enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. J Immunol, 189(1), 365-372. doi:10.4049/jimmunol.1102073

    Baixauli, F., Lopez-Otin, C., & Mittelbrunn, M. (2014). Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol, 5, 403. doi:10.3389/fimmu.2014.00403

    Bessaud, M., Razafindratsimandresy, R., Nougairede, A., Joffret, M. L., Deshpande, J. M., Dubot-Peres, A., Heraud, J. M., de Lamballerie, X., Delpeyroux, F., & Bailly, J. L. (2014). Molecular comparison and evolutionary analyses of VP1 nucleotide sequences of new African human enterovirus 71 isolates reveal a wide genetic diversity. PLoS One, 9(3), e90624. doi:10.1371/journal.pone.0090624

    Bible, J. M., Pantelidis, P., Chan, P. K., & Tong, C. Y. (2007). Genetic evolution of enterovirus 71: epidemiological and pathological implications. Rev Med Virol, 17(6), 371-379. doi:10.1002/rmv.538

    Boya, P., Reggiori, F., & Codogno, P. (2013). Emerging regulation and functions of autophagy. Nat Cell Biol, 15(7), 713-720. doi:10.1038/ncb2788

    Brown, B. A., Oberste, M. S., Alexander, J. P., Jr., Kennett, M. L., & Pallansch, M. A. (1999). Molecular epidemiology and evolution of enterovirus 71 strains isolated from 1970 to 1998. J Virol, 73(12), 9969-9975. doi:10.1128/JVI.73.12.9969-9975.1999

    Cappello, P., Principe, M., Bulfamante, S., & Novelli, F. (2017). Alpha-Enolase (ENO1), a potential target in novel immunotherapies. Front Biosci (Landmark Ed), 22, 944-959. doi:10.2741/4526

    Chan, S. Y., Sam, I. C., Lai, J. K., & Chan, Y. F. (2015). Cellular proteome alterations in response to enterovirus 71 and coxsackievirus A16 infections in neuronal and intestinal cell lines. J Proteomics, 125, 121-130. doi:10.1016/j.jprot.2015.05.016

    Chang, L. Y., King, C. C., Hsu, K. H., Ning, H. C., Tsao, K. C., Li, C. C., Huang, Y. C., Shih, S. R., Chiou, S. T., Chen, P. Y., Chang, H. J., & Lin, T. Y. (2002). Risk factors of enterovirus 71 infection and associated hand, foot, and mouth disease/herpangina in children during an epidemic in Taiwan. Pediatrics, 109(6), e88. doi:10.1542/peds.109.6.e88

    Chen, K. R., & Ling, P. (2019). Interplays between Enterovirus A71 and the innate immune system. J Biomed Sci, 26(1), 95. doi:10.1186/s12929-019-0596-8

    Chiramel, A. I., Brady, N. R., & Bartenschlager, R. (2013). Divergent roles of autophagy in virus infection. Cells, 2(1), 83-104. doi:10.3390/cells2010083

    Dai, L., Qu, Y., Li, J., Wang, X., Wang, K., Wang, P., Jiang, B. H., & Zhang, J. (2017). Serological proteome analysis approach-based identification of ENO1 as a tumor-associated antigen and its autoantibody could enhance the sensitivity of CEA and CYFRA 21-1 in the detection of non-small cell lung cancer. Oncotarget, 8(22), 36664-36673. doi:10.18632/oncotarget.17067

    de Carvalho Nicacio, C., Williamson, R. A., Parren, P. W., Lundkvist, A., Burton, D. R., & Bjorling, E. (2002). Neutralizing human Fab fragments against measles virus recovered by phage display. J Virol, 76(1), 251-258.

    Diaz-Ramos, A., Roig-Borrellas, A., Garcia-Melero, A., & Lopez-Alemany, R. (2012). alpha-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol, 2012, 156795. doi:10.1155/2012/156795

    Didiasova, M., Schaefer, L., & Wygrecka, M. (2019). When Place Matters: Shuttling of Enolase-1 Across Cellular Compartments. Front Cell Dev Biol, 7, 61. doi:10.3389/fcell.2019.00061

    Ding, N. Z., Wang, X. M., Sun, S. W., Song, Q., Li, S. N., & He, C. Q. (2009). Appearance of mosaic enterovirus 71 in the 2008 outbreak of China. Virus Res, 145(1), 157-161. doi:10.1016/j.virusres.2009.06.006

    Duan, L., Laughlin, M. A., Oakes, J. W., & Pomerantz, R. J. (1998). Potent inhibition of human immunodeficiency virus type 1 replication by an intracellular anti-Rev single-chain antibody. Proc Natl Acad Sci U S A, 95(17), 10344.

    Dudani, A. K., Cummings, C., Hashemi, S., & Ganz, P. R. (1993). Isolation of a novel 45 kDa plasminogen receptor from human endothelial cells. Thromb Res, 69(2), 185-196. doi:10.1016/0049-3848(93)90044-o

    Eriksson, B., Oberg, K., & Stridsberg, M. (2000). Tumor markers in neuroendocrine tumors. Digestion, 62 Suppl 1, 33-38. doi:10.1159/000051853

    Foo, D. G., Alonso, S., Phoon, M. C., Ramachandran, N. P., Chow, V. T., & Poh, C. L. (2007). Identification of neutralizing linear epitopes from the VP1 capsid protein of Enterovirus 71 using synthetic peptides. Virus Res, 125(1), 61-68. doi:10.1016/j.virusres.2006.12.005

    Foo, D. G., Ang, R. X., Alonso, S., Chow, V. T., Quak, S. H., & Poh, C. L. (2008). Identification of immunodominant VP1 linear epitope of enterovirus 71 (EV71) using synthetic peptides for detecting human anti-EV71 IgG antibodies in Western blots. Clin Microbiol Infect, 14(3), 286-288. doi:10.1111/j.1469-0691.2007.01904.x

    Hagiwara, A., Tagaya, I., & Yoneyama, T. (1978). Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection. Intervirology, 9(1), 60-63. doi:10.1159/000148922

    Han, L., Li, K., Jin, C., Wang, J., Li, Q., Zhang, Q., Cheng, Q., Yang, J., Bo, X., & Wang, S. (2017). Human enterovirus 71 protein interaction network prompts antiviral drug repositioning. Sci Rep, 7, 43143. doi:10.1038/srep43143

    Ho, M., Chen, E. R., Hsu, K. H., Twu, S. J., Chen, K. T., Tsai, S. F., Wang, J. R., & Shih, S. R. (1999). An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med, 341(13), 929-935. doi:10.1056/NEJM199909233411301

    Hogle, J. M., Chow, M., & Filman, D. J. (1985). Three-dimensional structure of poliovirus at 2.9 A resolution. Science, 229(4720), 1358-1365.

    Hsia, S. H., Lin, J. J., Chan, O. W., & Lin, T. Y. (2020). Cardiopulmonary failure in children infected with Enterovirus A71. J Biomed Sci, 27(1), 53. doi:10.1186/s12929-020-00650-1

    Huang, S. C., Chang, C. L., Wang, P. S., Tsai, Y., & Liu, H. S. (2009). Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol, 81(7), 1241-1252. doi:10.1002/jmv.21502

    Huang, S. W., Tai, C. H., Fonville, J. M., Lin, C. H., Wang, S. M., Liu, C. C., Su, I. J., Smith, D. J., & Wang, J. R. (2015). Mapping Enterovirus A71 Antigenic Determinants from Viral Evolution. J Virol, 89(22), 11500-11506. doi:10.1128/JVI.02035-15

    Huang, S. W., Wang, Y. F., Yu, C. K., Su, I. J., & Wang, J. R. (2012). Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology, 422(1), 132-143. doi:10.1016/j.virol.2011.10.015

    Huang, Y. P., Lin, T. L., Kuo, C. Y., Lin, M. W., Yao, C. Y., Liao, H. W., Hsu, L. C., Yang, C. F., Yang, J. Y., Chen, P. J., & Wu, H. S. (2008). The circulation of subgenogroups B5 and C5 of enterovirus 71 in Taiwan from 2006 to 2007. Virus Res, 137(2), 206-212. doi:10.1016/j.virusres.2008.07.015

    Kishimoto, N., Iga, N., Yamamoto, K., Takamune, N., & Misumi, S. (2017). Virion-incorporated alpha-enolase suppresses the early stage of HIV-1 reverse transcription. Biochem Biophys Res Commun, 484(2), 278-284. doi:10.1016/j.bbrc.2017.01.096

    Kobayashi, K., & Koike, S. (2020). Cellular receptors for enterovirus A71. J Biomed Sci, 27(1), 23. doi:10.1186/s12929-020-0615-9

    Kulkeaw, K., Sakolvaree, Y., Srimanote, P., Tongtawe, P., Maneewatch, S., Sookrung, N., Tungtrongchitr, A., Tapchaisri, P., Kurazono, H., & Chaicumpa, W. (2009). Human monoclonal ScFv neutralize lethal Thai cobra, Naja kaouthia, neurotoxin. J Proteomics, 72(2), 270-282. doi:10.1016/j.jprot.2008.12.007

    Kuo, R. L., Lin, Y. H., Wang, R. Y., Hsu, C. W., Chiu, Y. T., Huang, H. I., Kao, L. T., Yu, J. S., Shih, S. R., & Wu, C. C. (2015). Proteomics analysis of EV71-infected cells reveals the involvement of host protein NEDD4L in EV71 replication. J Proteome Res, 14(4), 1818-1830. doi:10.1021/pr501199h

    Ledermann, J. A. (1994). Serum neurone-specific enolase and other neuroendocrine markers in lung cancer. Eur J Cancer, 30A(5), 574-576. doi:10.1016/0959-8049(94)90519-3

    Leong, W. F., & Chow, V. T. (2006). Transcriptomic and proteomic analyses of rhabdomyosarcoma cells reveal differential cellular gene expression in response to enterovirus 71 infection. Cell Microbiol, 8(4), 565-580. doi:10.1111/j.1462-5822.2005.00644.x

    Lin, J. Y., Li, M. L., Huang, P. N., Chien, K. Y., Horng, J. T., & Shih, S. R. (2008). Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5' untranslated region and participates in virus replication. J Gen Virol, 89(Pt 10), 2540-2549. doi:10.1099/vir.0.2008/003673-0

    Lin, J. Y., Li, M. L., & Shih, S. R. (2009). Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic Acids Res, 37(1), 47-59. doi:10.1093/nar/gkn901

    Lin, J. Y., Shih, S. R., Pan, M., Li, C., Lue, C. F., Stollar, V., & Li, M. L. (2009). hnRNP A1 interacts with the 5' untranslated regions of enterovirus 71 and Sindbis virus RNA and is required for viral replication. J Virol, 83(12), 6106-6114. doi:10.1128/JVI.02476-08

    Lin, Y. W., Chang, K. C., Kao, C. M., Chang, S. P., Tung, Y. Y., & Chen, S. H. (2009). Lymphocyte and antibody responses reduce enterovirus 71 lethality in mice by decreasing tissue viral loads. J Virol, 83(13), 6477-6483. doi:10.1128/JVI.00434-09

    Liu, Y., Chang, J., Chen, Y., Wan, B., Wang, Y., & Zhang, G. (2012). Construction of a human scFv antibody library with VH regions randomized and its application. Biotechnol Lett, 34(7), 1203-1208. doi:10.1007/s10529-012-0898-3

    Lu, B. R., Brindley, S. M., Tucker, R. M., Lambert, C. L., & Mack, C. L. (2010). alpha-enolase autoantibodies cross-reactive to viral proteins in a mouse model of biliary atresia. Gastroenterology, 139(5), 1753-1761. doi:10.1053/j.gastro.2010.07.042

    Marasco, W. A., LaVecchio, J., & Winkler, A. (1999). Human anti-HIV-1 tat sFv intrabodies for gene therapy of advanced HIV-1-infection and AIDS. J Immunol Methods, 231(1-2), 223-238.

    Mazuc, E., Guglielmi, L., Bec, N., Parez, V., Hahn, C. S., Mollevi, C., Parrinello, H., Desvignes, J. P., Larroque, C., Jupp, R., Dariavach, P., & Martineau, P. (2014). In-cell intrabody selection from a diverse human library identifies C12orf4 protein as a new player in rodent mast cell degranulation. PLoS One, 9(8), e104998. doi:10.1371/journal.pone.0104998

    McCafferty, J. (2014). Phenotypic directed antibody selection. Chem Biol, 21(2), 170-171. doi:10.1016/j.chembiol.2014.02.004

    McCullough, K. C., De Simone, F., Brocchi, E., Capucci, L., Crowther, J. R., & Kihm, U. (1992). Protective immune response against foot-and-mouth disease. J Virol, 66(4), 1835-1840.

    McMinn, P. C. (2014). Enterovirus vaccines for an emerging cause of brain-stem encephalitis. N Engl J Med, 370(9), 792-794. doi:10.1056/NEJMp1400601

    Miles, L. A., Dahlberg, C. M., Plescia, J., Felez, J., Kato, K., & Plow, E. F. (1991). Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry, 30(6), 1682-1691. doi:10.1021/bi00220a034

    Mizushima, N., & Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell, 147(4), 728-741. doi:10.1016/j.cell.2011.10.026

    Mizuta, K., Aoki, Y., Suto, A., Ootani, K., Katsushima, N., Itagaki, T., Ohmi, A., Okamoto, M., Nishimura, H., Matsuzaki, Y., Hongo, S., Sugawara, K., Shimizu, H., & Ahiko, T. (2009). Cross-antigenicity among EV71 strains from different genogroups isolated in Yamagata, Japan, between 1990 and 2007. Vaccine, 27(24), 3153-3158. doi:10.1016/j.vaccine.2009.03.060

    Mukhtar, M. M., Li, S., Li, W., Wan, T., Mu, Y., Wei, W., Kang, L., Rasool, S. T., Xiao, Y., Zhu, Y., & Wu, J. (2009). Single-chain intracellular antibodies inhibit influenza virus replication by disrupting interaction of proteins involved in viral replication and transcription. Int J Biochem Cell Biol, 41(3), 554-560. doi:10.1016/j.biocel.2008.07.001

    Niklinski, J., & Furman, M. (1995). Clinical tumour markers in lung cancer. Eur J Cancer Prev, 4(2), 129-138. doi:10.1097/00008469-199504000-00002

    Nishimura, Y., Shimojima, M., Tano, Y., Miyamura, T., Wakita, T., & Shimizu, H. (2009). Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med, 15(7), 794-797. doi:10.1038/nm.1961

    Ojha, C. R., Lapierre, J., Rodriguez, M., Dever, S. M., Zadeh, M. A., DeMarino, C., Pleet, M. L., Kashanchi, F., & El-Hage, N. (2017). Interplay between Autophagy, Exosomes and HIV-1 Associated Neurological Disorders: New Insights for Diagnosis and Therapeutic Applications. Viruses, 9(7). doi:10.3390/v9070176

    Organization, W. H. (2002). WHO manual on animal influenza diagnosis and surveillance. World Health Organization, Geneva, Switzerland.

    Peng, B., Huang, X., Nakayasu, E. S., Petersen, J. R., Qiu, S., Almeida, I. C., & Zhang, J. Y. (2013). Using immunoproteomics to identify alpha-enolase as an autoantigen in liver fibrosis. J Proteome Res, 12(4), 1789-1796. doi:10.1021/pr3011342

    Plevka, P., Perera, R., Yap, M. L., Cardosa, J., Kuhn, R. J., & Rossmann, M. G. (2013). Structure of human enterovirus 71 in complex with a capsid-binding inhibitor. Proc Natl Acad Sci U S A, 110(14), 5463-5467. doi:10.1073/pnas.1222379110

    Pourianfar, H. R., Poh, C. L., Fecondo, J., & Grollo, L. (2012). In vitro evaluation of the antiviral activity of heparan sulfate mimetic compounds against Enterovirus 71. Virus Res, 169(1), 22-29. doi:10.1016/j.virusres.2012.06.025

    Pratesi, F., Moscato, S., Sabbatini, A., Chimenti, D., Bombardieri, S., & Migliorini, P. (2000). Autoantibodies specific for alpha-enolase in systemic autoimmune disorders. J Rheumatol, 27(1), 109-115.

    Ray, A., Song, Y., Du, T., Chauhan, D., & Anderson, K. C. (2020). Preclinical validation of Alpha-Enolase (ENO1) as a novel immunometabolic target in multiple myeloma. Oncogene, 39(13), 2786-2796. doi:10.1038/s41388-020-1172-0

    Rogozin, I. B., Solovyov, V. V., & Kolchanov, N. A. (1991). Somatic hypermutagenesis in immunoglobulin genes. I. Correlation between somatic mutations and repeats. Somatic mutation properties and clonal selection. Biochim Biophys Acta, 1089(2), 175-182.

    Salimi, L., Akbari, A., Jabbari, N., Mojarad, B., Vahhabi, A., Szafert, S., Kalashani, S. A., Soraya, H., Nawaz, M., & Rezaie, J. (2020). Synergies in exosomes and autophagy pathways for cellular homeostasis and metastasis of tumor cells. Cell Biosci, 10, 64. doi:10.1186/s13578-020-00426-y

    Saulot, V., Vittecoq, O., Charlionet, R., Fardellone, P., Lange, C., Marvin, L., Machour, N., Le Loet, X., Gilbert, D., & Tron, F. (2002). Presence of autoantibodies to the glycolytic enzyme alpha-enolase in sera from patients with early rheumatoid arthritis. Arthritis Rheum, 46(5), 1196-1201. doi:10.1002/art.10252

    Schmidt, N. J., Lennette, E. H., & Ho, H. H. (1974). An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis, 129(3), 304-309. doi:10.1093/infdis/129.3.304

    Sennoune, S. R., Luo, D., & Martinez-Zaguilan, R. (2004). Plasmalemmal vacuolar-type H+-ATPase in cancer biology. Cell Biochem Biophys, 40(2), 185-206. doi:10.1385/CBB:40:2:185

    Shih, N. Y., Lai, H. L., Chang, G. C., Lin, H. C., Wu, Y. C., Liu, J. M., Liu, K. J., & Tseng, S. W. (2010). Anti-alpha-enolase autoantibodies are down-regulated in advanced cancer patients. Jpn J Clin Oncol, 40(7), 663-669. doi:10.1093/jjco/hyq028

    Shih, S. R., Stollar, V., & Li, M. L. (2011). Host factors in enterovirus 71 replication. J Virol, 85(19), 9658-9666. doi:10.1128/JVI.05063-11

    Shimizu, H., Utama, A., Onnimala, N., Li, C., Li-Bi, Z., Yu-Jie, M., Pongsuwanna, Y., & Miyamura, T. (2004). Molecular epidemiology of enterovirus 71 infection in the Western Pacific Region. Pediatr Int, 46(2), 231-235. doi:10.1046/j.1442-200x.2004.01868.x

    Shipley, J. B., Tolman, D., Hastillo, A., & Hess, M. L. (1996). Milrinone: basic and clinical pharmacology and acute and chronic management. Am J Med Sci, 311(6), 286-291. doi:10.1097/00000441-199606000-00011

    Shu, X., Cao, K. Y., Liu, H. Q., Yu, L., Sun, L. X., Yang, Z. H., Wu, C. A., & Ran, Y. L. (2021). Alpha-enolase (ENO1), identified as an antigen to monoclonal antibody 12C7, promotes the self-renewal and malignant phenotype of lung cancer stem cells by AMPK/mTOR pathway. Stem Cell Res Ther, 12(1), 119. doi:10.1186/s13287-021-02160-9

    Su, P. Y., Wang, Y. F., Huang, S. W., Lo, Y. C., Wang, Y. H., Wu, S. R., Shieh, D. B., Chen, S. H., Wang, J. R., Lai, M. D., & Chang, C. F. (2015). Cell surface nucleolin facilitates enterovirus 71 binding and infection. J Virol, 89(8), 4527-4538. doi:10.1128/JVI.03498-14

    Subramanian, A., & Miller, D. M. (2000). Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem, 275(8), 5958-5965. doi:10.1074/jbc.275.8.5958

    Takashima, M., Kuramitsu, Y., Yokoyama, Y., Iizuka, N., Fujimoto, M., Nishisaka, T., Okita, K., Oka, M., & Nakamura, K. (2005). Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma: association with tumor progression as determined by proteomic analysis. Proteomics, 5(6), 1686-1692. doi:10.1002/pmic.200401022

    Tan, C. W., Chan, Y. F., Sim, K. M., Tan, E. L., & Poh, C. L. (2012). Inhibition of enterovirus 71 (EV-71) infections by a novel antiviral peptide derived from EV-71 capsid protein VP1. PLoS One, 7(5), e34589. doi:10.1371/journal.pone.0034589

    Tang, W. F., Yang, S. Y., Wu, B. W., Jheng, J. R., Chen, Y. L., Shih, C. H., Lin, K. H., Lai, H. C., Tang, P., & Horng, J. T. (2007). Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication. J Biol Chem, 282(8), 5888-5898. doi:10.1074/jbc.M611145200

    Too, I. H. K., Bonne, I., Tan, E. L., Chu, J. J. H., & Alonso, S. (2018). Prohibitin plays a critical role in Enterovirus 71 neuropathogenesis. PLoS Pathog, 14(1), e1006778. doi:10.1371/journal.ppat.1006778

    Tripathi, L. P., Kataoka, C., Taguwa, S., Moriishi, K., Mori, Y., Matsuura, Y., & Mizuguchi, K. (2010). Network based analysis of hepatitis C virus core and NS4B protein interactions. Mol Biosyst, 6(12), 2539-2553. doi:10.1039/c0mb00103a

    Vascotto, F., Campagna, M., Visintin, M., Cattaneo, A., & Burrone, O. R. (2004). Effects of intrabodies specific for rotavirus NSP5 during the virus replicative cycle. J Gen Virol, 85(Pt 11), 3285-3290. doi:10.1099/vir.0.80075-0

    Wang, J. R., Tuan, Y. C., Tsai, H. P., Yan, J. J., Liu, C. C., & Su, I. J. (2002). Change of major genotype of enterovirus 71 in outbreaks of hand-foot-and-mouth disease in Taiwan between 1998 and 2000. J Clin Microbiol, 40(1), 10-15. doi:10.1128/JCM.40.1.10-15.2002

    Wang, S. M. (2016). Milrinone in Enterovirus 71 Brain Stem Encephalitis. Front Pharmacol, 7, 82. doi:10.3389/fphar.2016.00082

    Wang, S. M., Lei, H. Y., Huang, M. C., Wu, J. M., Chen, C. T., Wang, J. N., Wang, J. R., & Liu, C. C. (2005). Therapeutic efficacy of milrinone in the management of enterovirus 71-induced pulmonary edema. Pediatr Pulmonol, 39(3), 219-223. doi:10.1002/ppul.20157

    Wang, S. M., Lei, H. Y., & Liu, C. C. (2012). Cytokine immunopathogenesis of enterovirus 71 brain stem encephalitis. Clin Dev Immunol, 2012, 876241. doi:10.1155/2012/876241

    Wang, S. M., & Liu, C. C. (2009). Enterovirus 71: epidemiology, pathogenesis and management. Expert Rev Anti Infect Ther, 7(6), 735-742. doi:10.1586/eri.09.45

    Wang, S. M., & Liu, C. C. (2014). Update of enterovirus 71 infection: epidemiology, pathogenesis and vaccine. Expert Rev Anti Infect Ther, 12(4), 447-456. doi:10.1586/14787210.2014.895666

    Wang, S. M., Liu, C. C., Tseng, H. W., Wang, J. R., Huang, C. C., Chen, Y. J., Yang, Y. J., Lin, S. J., & Yeh, T. F. (1999). Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin Infect Dis, 29(1), 184-190. doi:10.1086/520149

    Wang, Y. F., Chou, C. T., Lei, H. Y., Liu, C. C., Wang, S. M., Yan, J. J., Su, I. J., Wang, J. R., Yeh, T. M., Chen, S. H., & Yu, C. K. (2004). A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol, 78(15), 7916-7924. doi:10.1128/JVI.78.15.7916-7924.2004

    Wu, D. T., Seita, Y., Zhang, X., Lu, C. W., & Roth, M. J. (2012). Antibody-directed lentiviral gene transduction for live-cell monitoring and selection of human iPS and hES cells. PLoS One, 7(4), e34778. doi:10.1371/journal.pone.0034778

    Xi, X., Zhang, X., Wang, B., Wang, T., Wang, J., Huang, H., Wang, J., Jin, Q., & Zhao, Z. (2013). The interplays between autophagy and apoptosis induced by enterovirus 71. PLoS One, 8(2), e56966. doi:10.1371/journal.pone.0056966

    Xiang-Chun, D., Xiao-Qing, Y., Ting-Ting, Y., Zhen-Hui, L., Xiao-Yan, L., Xia, L., Yan-Chao, H., Yi-Xuan, Y., & Li-Na, M. (2018). Alpha-enolase regulates hepatitis B virus replication through suppression of the interferon signalling pathway. J Viral Hepat, 25(3), 289-295. doi:10.1111/jvh.12813

    Xie, J., Yea, K., Zhang, H., Moldt, B., He, L., Zhu, J., & Lerner, R. A. (2014). Prevention of cell death by antibodies selected from intracellular combinatorial libraries. Chem Biol, 21(2), 274-283. doi:10.1016/j.chembiol.2013.12.006

    Yamayoshi, S., Yamashita, Y., Li, J., Hanagata, N., Minowa, T., Takemura, T., & Koike, S. (2009). Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med, 15(7), 798-801. doi:10.1038/nm.1992

    Yang, B., Chuang, H., & Yang, K. D. (2009). Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J, 6, 141. doi:10.1186/1743-422X-6-141

    Yang, F., Ren, L., Xiong, Z., Li, J., Xiao, Y., Zhao, R., He, Y., Bu, G., Zhou, S., Wang, J., & Qi, J. (2009). Enterovirus 71 outbreak in the People's Republic of China in 2008. J Clin Microbiol, 47(7), 2351-2352. doi:10.1128/JCM.00563-09

    Yang, S. L., Chou, Y. T., Wu, C. N., & Ho, M. S. (2011). Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol, 85(22), 11809-11820. doi:10.1128/JVI.00297-11

    Yao, F., Zhang, M., & Chen, L. (2016). 5'-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications. Acta Pharm Sin B, 6(1), 20-25. doi:10.1016/j.apsb.2015.07.009

    Ye, Y., Kuhn, C., Kosters, M., Arnold, G. J., Ishikawa-Ankerhold, H., Schulz, C., Rogenhofer, N., Thaler, C. J., Mahner, S., Frohlich, T., Jeschke, U., & von Schonfeldt, V. (2019). Anti alpha-enolase antibody is a novel autoimmune biomarker for unexplained recurrent miscarriages. EBioMedicine, 41, 610-622. doi:10.1016/j.ebiom.2019.02.027

    Yi, E. J., Shin, Y. J., Kim, J. H., Kim, T. G., & Chang, S. Y. (2017). Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res, 6(1), 4-14. doi:10.7774/cevr.2017.6.1.4

    Yogarajah, T., Ong, K. C., Perera, D., & Wong, K. T. (2017). AIM2 Inflammasome-Mediated Pyroptosis in Enterovirus A71-Infected Neuronal Cells Restricts Viral Replication. Sci Rep, 7(1), 5845. doi:10.1038/s41598-017-05589-2

    Zhang, J., Zhang, X., Liu, Q., Li, M., Gao, L., Gao, X., Xiang, S., Wu, L., Fu, J., & Song, H. (2014). Mammalian cell display for rapid screening scFv antibody therapy. Acta Biochim Biophys Sin (Shanghai), 46(10), 859-866. doi:10.1093/abbs/gmu079

    Zhang, L., Wang, H., & Dong, X. (2018). Diagnostic value of alpha-enolase expression and serum alpha-enolase autoantibody levels in lung cancer. J Bras Pneumol, 44(1), 18-23. doi:10.1590/S1806-37562016000000241

    Zhao, M., Fang, W., Wang, Y., Guo, S., Shu, L., Wang, L., Chen, Y., Fu, Q., Liu, Y., Hua, S., Fan, Y., Liu, Y., Deng, X., Luo, R., Mei, Z., Jiang, Q., & Liu, Z. (2015). Enolase-1 is a therapeutic target in endometrial carcinoma. Oncotarget, 6(17), 15610-15627. doi:10.18632/oncotarget.3639

    Zhao, T., Huang, X., & Xia, Y. (2016). Human heart cell proteins interacting with a C-terminally truncated 2A protein of coxsackie B3 virus: identification by the yeast two-hybrid system. Virus Genes, 52(2), 172-178. doi:10.1007/s11262-015-1270-1

    Zou, P., Yang, Y., Xu, X., Liu, B., Mei, F., You, J., Liu, Q., & Pei, F. (2018). Silencing of vacuolar ATPase c subunit ATP6V0C inhibits the invasion of prostate cancer cells through a LASS2/TMSG1-independent manner. Oncol Rep, 39(1), 298-306. doi:10.3892/or.2017.6092

    無法下載圖示 校內:2026-07-26公開
    校外:2026-07-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE