簡易檢索 / 詳目顯示

研究生: 陳宣諭
Chen, Hsuan-Yu
論文名稱: 非膠合木質緊固件集成牆體之側推行為與複合效益解析
Lateral behaviour and composite efficiency of adhesive-free laminated timber wall fastened by wood dowel
指導教授: 葉玉祥
Yeh, Yu-Hsiang
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 142
中文關鍵詞: 非膠合集成木構件木質緊固件緊固件間距剛度複合效率
外文關鍵詞: adhesive-free laminated timber, wood fastener, fastener spacing, bending stiffness, composite efficiency
相關次數: 點閱:33下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非膠合集成構件以機械緊固件取代化學膠合劑,除具備環境友善、方便回收及加工生產容易等優勢外,相較於膠合集成構件普遍剛性較大、受力容易產生應力集中於該構件之現象,非膠合集成構件剛度適中的特性,可使構件受力時利用集成元間或與緊固件相互錯動達到吸收能量的效果。
    故本研究以木榫作為緊固件之非膠合集成牆體作為主要研究對象,探討緊固件種類及間距對於非膠合集成牆體側推行為之影響,並比較不同集成方式對於非膠合集成構件之剛性及集成材複合效率之影響。牆體試體尺寸設定為寬30.4cm × 高130cm × 厚15cm,將直徑約2cm之木榫分別以緊固件間距8cm及16cm打入以國產柳杉加工製成的集成元中。利用千斤頂對試體進行側向加載,並以儀器紀錄試體所受之荷重及變形,同步以攝影設備紀錄牆體在加載過程之外觀變化,直到外觀明顯破壞或強度下降至80%以下後停止。依照試驗所得之數值推算牆體載重強度、剛度、複合效率等性質,並比較不同緊固件配置間距、不同集成方式、運用於不同構件對其力學行為之影響。
    兩種緊固件間距之牆體試體側推試驗結果顯示,緊固件間距16cm試體之降伏載重強度較大,平均為11.7kN,惟緊固件間距8cm試體之極限載重強度(17.7kN)與延展性(7.0)較大。根據試驗結果推算剛度及複合效率發現,緊固件間距較大(16cm)之試體擁有較少緊固件數量,卻得到較高之實驗有效剛度(32.7kN-m2)及複合效率(9.3%),推測原因為構件緊固件打入時之施工誤差所造成,而緊固件間距小、數量較多者誤差累積較多。非膠合集成牆體之破壞模式以集成元間相對滑動、木榫與集成元相對錯動等韌性破壞為主。以上兩種破壞類型皆為可逆,即在加載結束後以反方向施力即可恢復試體受力前狀態,可有效達到非膠合集成牆體利用相對錯動吸收多餘能量之效果,且具方便可修復之特性。
    比較不同集成方式(包含膠合、自攻螺絲緊固件、木質緊固件)後顯示,木榫緊固件的牆體延展性最佳,而膠合牆體在載重強度、剛度和複合效率方面表現最好。自攻螺絲牆體之各項性能(包含極限強度、延展性、剛度、複合效率)隨緊固件間距減小而提升,而木榫緊固件牆體的延展性和載重強度隨緊固件間距減小而提高,剛度和複合效率則隨緊固件間距增大而提高。由此可知使用不同緊固件種類之非膠合集成牆體在力學行為及受緊固件影響之程度有顯著差異。
    另外比較不同集成方式運用於不同構件之力學性能倍率差異後發現,非膠合集成方式運用於牆體構件時,與膠合集成方式相比,其載重強度折減倍率在梁構件及牆體構件時差異不大、惟剛度及複合效率折減倍率用於牆體構件與梁構件相比輕微許多。因此推斷非膠合集成方式較適合運用於牆體。
    綜合以上所述,非膠合集成牆體的力學性質受到緊固件的集成方式、材質和間距的顯著影響。該領域仍有許多值得深入探討的議題。以木榫作為緊固件的非膠合集成牆體在延展性、剛度及複合效率方面表現適中,其破壞模式以可修復且具預警性的集成元間相對滑動及木榫與集成元間相對錯動為主。因此,非膠合集成牆體是一種具競爭力、永續發展性和實務可行性的優良工程木材選擇。

    This study focuses on AFLT walls fastened by wood dowel, discussing fastener type and spacing effects on lateral behavior. The specimens are sized 30.4 cm in width, 130 cm in height, and 15 cm in thickness and composed of 8 laminas with thickness of 3.8cm which are made from Cryptomeria japonica. Wooden dowels with a diameter of 1.9 cm are driven into the laminae with spacings of 8 cm and 16 cm for 2 different types of specimens. Each type of specimen contains 4 sets of samples and is all applied by lateral loading, while load and deformation are recorded. The results show differences between strengths and ductilities of the specimens with 8 cm and 16 cm fastener spacings. The stiffness results obtained were 813.5 and 887.5 kN/m for 8 cm and 16 cm fastener spacings, respectively. The specimen with a larger fastener spacing (16cm) had fewer fasteners but achieved higher experimental effective stiffness (32.7 kN-m²) and composite efficiency (9.3%). This is probably due to construction errors when driving the fasteners, with the smaller spacing and larger number of fasteners resulting in more errors. The failure modes of the AFLT wall specimens involve ductile failures such as relative sliding between composite members and relative displacement between wooden dowel and laminae. Both types of failure can be reversed by applying force in the opposite direction after loading, effectively restoring the specimen to its pre-loading state. This allows for the absorption of excess energy through relative displacement and provides the benefit of easy repairability. The AFLT wall fastened by wood dowels offer superior ductility compared to adhesive bonding and fastener of self-tapping screws. AFLT walls with wooden fasteners are competitive for engineered wood construction, but further research is needed.

    摘要 I Extended Abstarct II 誌謝 V 目錄 VI 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 研究背景及動機 1 1-2 研究目的 1 1-3 研究範圍及對象 2 1-4 研究方法及流程 2 1-5 研究貢獻 4 第二章 文獻回顧 5 2-1 非膠合木構件的發展 5 2-2 非膠合集成木構件的力學特性 7 2-3 非膠合集成牆體的力學行為 9 2-4 集成方式及緊固件對於非膠合構件的影響 13 2-5 小結 21 第三章 研究方法 22 3-1 試體材料與規劃 23 3-2 材料測試與試體製程 27 3-3 實驗儀器與實驗架規劃 32 3-4 實驗數值計算 35 第四章 研究結果與分析 41 4-1 非膠合牆體側推試驗結果 41 4-2 非膠合牆體破壞模式 51 4-3 緊固件雙剪試驗結果 56 4-4 綜合比較與討論 61 第五章 結論與建議 68 5-1 結論 68 5-2 建議 69 參考文獻 70 附錄一 側推試驗記錄 73 附錄二 雙剪試驗記錄 97

    [1] AFTB (n.d.). Towards Adhesive Free Timber Buildings. https://vb.nweurope.eu/media/10250/brochure-of-results.pdf
    [2] Derikvand, M., Hosseinzadeh, S., & Fink, G. (2021). Mechanical properties of dowel laminated timber beams with connectors made of salvaged wooden materials. Journal of Architectural Engineering, 27(3), 10.1061/(ASCE)AE.1943-5568.0000513.
    [3] EN 1995-1:2004+A2:2014, Eurocode 5: Design of Timber Structures - Part 1-1: Common Rules and Rules for Buildings, CEN, Eur. Comm. Stand., Brussels, 2014.
    [4] EN26891, Timber structure- Joint made with mechanical fasteners- General principles for the determination of strength and deformation characteristics, 1991.
    [5] EN12521, Timber structure- Test method- Cyclic testing of joints made with mechanical fasteners, 2001.
    [6] Hahn, B., & Hatt, F. (2013). Technology for Prefabricated Elements in Timber Construction Laboratory for Timber Construction Hahn Friction Welding of Wood—A Fast. Adhesive-Free Bonding Technology for Prefabricated Elements in Timber Construction. ENAC Research Day, 127-467.
    [7] Houjeyri, E. I., Thi, V-D., Oudjene, M., Khelifa, M., Rogaume, Y., Sotayo, A., & Guan, Z. (2019). Experimental investigations on adhesive free laminated oak timber beams and timber-to-timber joints assembled using thermo-mechanically compressed wood dowels. Construction and Building Materials, 222, 288-299.
    [8] Marlegno. (n.d.). Glue-free structural wooden elements. https://www.construction21.org/data/sources/users/17741/brochure-tavego-eng.pdf
    [9] Mass Timber Institute. (n.d.). 7-Adhesive-Free-Wood-Joining. https://academic.daniels.utoronto.ca/masstimberinstitute/wp-content/uploads/sites/5/2022/01/7-Adhesive-Free-Wood-Joining.pdf
    [10] Parajuli, R., & Laleicke, F. (2018, Aug. 9). Mass Timber Products: Innovative Wood-Based Building Materials. NC State Extension. https://content.ces.ncsu.edu/mass-timber-products-innovative-wood-based-building-materials
    [11] Pereira, M. C. de M., Sohier, L. A. P., Descamps, T., & Calil, C., Jr. (2021). Doweled cross laminated timber: Experimental and analytical study. Construction and Building Materials, 273, 121820. https://doi.org/10.1016/j.conbuildmat.2020.121820
    [12] Sotayo, A., Bradley, D., Bather, M., Oudjene, M., El-Houjeyri, I., & Guan, Z. (2020). Development and structural behaviour of adhesive free laminated timber beams and cross laminated panels. Construction and Building Materials, 259(119821).
    [13] Tarazona, S. (2023, Apr. 11). Inholz | Brettstapel. TREE_TimberREengineered. https://bk-wood.nl/brettstapel/
    [14] Woeste, F. (2023, Aug. 10). Solid-sawn vs. Built-up Column Strength. JLC Online. https://www.jlconline.com/how-to/framing/solid-sawn-vs-built-up-column-strength_o
    [15] Zhang, C., Lee, G., & Lam, F. (2018). Study of Massive Timber Walls based on NLT and Post Laminated LVL. Timber Engineering and Applied Mechanics Laboratory, 1901-2424.
    [16] 內政部營建署 (2011)。木構造建築物設計及施工技術規範。
    [17] 中華民國國家標準. (2014)。結構用集成材 Structural glued-laminated timber. In (Vol. CNS 11031).
    [18] 葉衣祺 (2019)。國產材非膠合集成梁的產製與靜曲行為。國立成功大學碩士論文。
    [19] 趙盈婷 (2020)。橫貫緊固件材質與角度對國產柳杉非膠合集成梁靜曲行為的影響。國立成功大學碩士論文。
    [20] 張璿智 (2022)。國產材非膠合集成牆體的側推行為。國立成功大學碩士論文。
    [21] 陳怡妤(2023)。無膠集成工程木材系統之抗彎力學行為研究。國立高雄大學碩士論文。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE