| 研究生: |
林明賢 Lin, Ming_Xian |
|---|---|
| 論文名稱: |
應用混合微分轉換/有限差分法於非線性結構問題 Application of Hybrid Differential Transformation / Finite Difference Method to the Nonlinear Structural Problems |
| 指導教授: |
陳朝光
Chen, Cha’o-Kuang 李森墉 Lee, Sen-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 奈米機電系統 、微分轉換法 、非局域彈性理論 、表面彈性理論 、修正耦合應力理論 、吸附電壓 |
| 外文關鍵詞: | Nanoelectromechanical system, Differential transformation method, Nonlocal elasticity theory, Surface elasticity theory, modified couple stress theory, Pull-in voltage |
| 相關次數: | 點閱:138 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用混合微分轉換/有限差分法探討非線性結構與靜電力、靜水壓力、殘留應力、黏滯力及熱應力效應的影響下,非線性結構系統的動態研究。首先介紹微分轉換法理論的定義及計算方法,接著應用微分轉換法將圓板之統御方程式轉換成迭代方程式,透過頻率方程式計算得到圓板的自然頻率與振動模態並探討微分轉換階數及非局域參數對自然頻率的影響。接下來將微分轉換法結合有限差分法針對非局域彈性理論、表面彈性理論、修正耦合應力理論在靜電驅動及靜水壓力效應下進行數值模擬並探討不同參數對奈米圓板吸附現象之影響。進行數值建模時使用微分轉換法處理時間域後再以有限差分法處理空間域並以數值軟體進行迭代計算。先以受靜電力及靜水壓力影響下探討非局域性彈性奈米圓板之行為。接下來混合直流電及交流電情況下探討表面彈性理論奈米圓板之動態行為。最後,探討修正耦合理論奈米圓板受靜水壓力及靜電力影響下之行為。研究結果得知非局域參數、表面參數、材料長度參數皆會顯著的影響圓板致動器之吸附值。
混合微分轉換/有限差分法與不同文獻之數值模型與實驗比較結果相當準確,誤差皆在7.4%以內,因此確認混合微分轉換/有限差分法是一種簡單並能有效應用於複雜非線性數值問題的數值方法。
關鍵字:奈米機電系統、微分轉換法、非局域彈性理論、表面彈性理論、修正耦合應力理論、吸附電壓
In recent years, the electromechanical systems problems is popular form the consideration of microscale to nanoscale. Some physical effects negligible on microscale have appreciable consequences at nanoscale. The classical theory cannot model and analyze the nanoscale problems accurately. The hybrid differential transformation / finite difference method is used to analyze various non-classical models. The hybrid method is used to model the governing equation problems of nonlocal elasticity theory, surface elasticity theory and modified couple stress theory (MCST). The electrostatically actuators are affected by various material and physical parameters, and the effects of physical effects and theories on the actuators are discussed. The effects of physical parameters on the actuators is discussed. The numerical results show that the nonlocal parameters, surface parameters and material length parameters all affect the pull-in values. The differential transformation method is simpler than other methods on complex nonlinear problems.
Keywords: Nanoelectromechanical system, Differential transformation method, Nonlocal elasticity theory, Surface elasticity theory, modified couple stress theory, Pull-in voltage
[1] Park, S., & Horowitz, R. Adaptive control for the conventional mode of operation of MEMS gyroscopes. Journal of Microelectromechanical Systems, 12(1), 101-108, 2003.
[2] Rutherglen, C., Jain, D., & Burke, P. Nanotube electronics for radiofrequency applications. Nature Nanotechnology, 4(12), 811, 2009.
[3] Shaat, M., & Abdelkefi, A. Pull-in instability of multi-phase nanocrystalline silicon beams under distributed electrostatic force. International Journal of Engineering Science, 90, 58-75, 2015.
[4] Yang, N., Chen, X., Ren, T., Zhang, P., & Yang, D. Carbon nanotube based biosensors. Sensors and Actuators B: Chemical, 207, 690-715, 2015.
[5] Lin, M. X., Lai, H. Y., & Chen C.K. Analysis of nonlocal nonlinear behavior of graphene sheet circular nanoplate actuators subject to uniform hydrostatic pressure. Microsystem Technologies, 1-10, 2017.
[6] Younis, M. I., Abdel-Rahman, E. M., & Nayfeh, A. A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical Systems, 12(5), 672-680, 2003.
[7] Ramezani, A., Alasty, A., & Akbari, J. Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces. International Journal of Solids and Structures, 44(14), 4925-4941, 2007.
[8] Liu, C. C. Surface effect on dynamic characteristics of the electrostatically nano-beam actuator. Computers & Electrical Engineering, 51, 284-290, 2016.
[9] Soroush, R., Koochi, A., Kazemi, A. S., Noghrehabadi, A., Haddadpour, H., & Abadyan, M. Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators. Physica Scripta, 82(4), 045801, 2010.
[10] Koochi, A., Fazli, N., & Rach, R. Modeling the pull-in instability of the CNT-based probe/actuator under the Coulomb force and the van der Waals attraction. Latin American Journal of Solids and Structures, 11(8), 1315-1328, 2014.
[11] Sedighi, H. M. Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. Acta Astronautica, 95, 111-123, 2014.
[12] Ansari, R., Gholami, R., Shojaei, M. F., Mohammadi, V., & Sahmani, S. Surface stress effect on the pull-in instability of circular nanoplates. Acta Astronautica, 102, 140-150, 2014.
[13] Liu, C. C. Dynamic behavior analysis of cantilever-type nano-mechanical electrostatic actuator. International Journal of Non-Linear Mechanics, 82, 124-130, 2016.
[14] Mohebshahedin, A., & Farrokhabadi, A. The influence of the surface energy on the instability behavior of NEMS structures in presence of intermolecular attractions. International Journal of Mechanical Sciences, 101, 437-448, 2015.
[15] Yang, W. D., Kang, W. B., & Wang, X. Thermal and surface effects on the pull-in characteristics of circular nanoplate NEMS actuator based on nonlocal elasticity theory. Applied Mathematical Modelling, 43, 321-336, 2017.
[16] Yang, F. A. C. M., Chong, A. C. M., Lam, D. C. C., & Tong, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10), 2731-2743, 2002.
[17] Shaat, M., & Mohamed, S. A. Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories. International Journal of Mechanical Sciences, 84, 208-217, 2014.
[18] Shaat, M., & Abdelkefi, A. Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications. International Journal of Mechanical Sciences, 101, 280-291, 2015.
[19] Shaat, M., & Abdelkefi, A. Material structure and size effects on the nonlinear dynamics of electrostatically-actuated nano-beams. International Journal of Non-Linear Mechanics, 89, 25-42, 2017.
[20] Khorshidi, M. A. The material length scale parameter used in couple stress theories is not a material constant. International Journal of Engineering Science, 133, 15-25, 2018.
[21] Eringen, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9), 4703-4710, 1983.
[22] Eringen, A. C., & Wegner, J. L. Nonlocal continuum field theories. Appl. Mech. Rev., 56(2), B20-B22, 2003.
[23] Eltaher, M. A., Mahmoud, F. F., Assie, A. E., & Meletis, E. I. Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Applied Mathematics and Computation, 224, 760-774, 2013.
[24] Reddy, J. N. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 45(2-8), 288-307, 2007.
[25] Liu, C. C., & Wang, C. C. Numerical investigation into nonlinear dynamic behavior of electrically-actuated clamped–clamped micro-beam with squeeze-film damping effect. Applied Mathematical Modelling, 38(13), 3269-3280, 2014.
[26] Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics, 48(1-2), 153-163, 2007.
[27] Zhou, J. K. Differential transformation and its applications for electrical circuits, Huazhong University Press, Wuhan China, 1986.
[28] Chen, C. K., & Ho, S. H. Application of differential transformation to eigenvalue problems. Applied Mathematics and Computation, 79(2), 173-188, 1996.
[29] Lai, H. Y., & Liu, C. C. Numerical analysis of entropy generation in mixed convection flow with viscous dissipation effects in vertical channel. International Communications in Heat and Mass Transfer, 38(3), 285-290, 2011.
[30] Ozgumus, O. O., & Kaya, M. O. Vibration analysis of a rotating tapered Timoshenko beam using DTM. Meccanica, 45(1), 33-42, 2010.
[31] Sheikholeslami, M., & Ganji, D. D. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Computer Methods in Applied Mechanics and Engineering, 283, 651-663, 2015.
[32] Chen, C. K., Lai, H. Y., & Liu, C. C. Application of hybrid differential transformation/finite difference method to nonlinear analysis of micro fixed-fixed beam. Microsystem Technologies, 15(6), 813-820, 2009.
[33] Zhou, Z. H., Wong, K. W., Xu, X. S., and Leung, A. Y. T. Natural vibration of circular and annular thin plates by Hamiltonian approach. Journal of Sound and Vibration, 330(5), 1005-1017, 2011
[34] Mohammadi, M., Ghayour, M., and Farajpour, A. Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model. Composites Part B: Engineering, 45(1), 32-42, 2013.
[35]Lin, M. X., Lee, S. Y., & Chen, C. K. Nonlocal Effect on the Pull-in Instability Analysis of Graphene Sheet Nanobeam Actuator. Journal of Mechanics, 1-12, 2019.
[36]Yang, J., Jia, X. L., & Kitipornchai, S. Pull-in instability of nano-switches using nonlocal elasticity theory. Journal of Physics D: Applied Physics, 41(3), 035103, 2008.
[37] Zhou, S. M., Sheng, L. P., & Shen, Z. B. Transverse vibration of circular graphene sheet-based mass sensor via nonlocal Kirchhoff plate theory. Computational Materials Science, 86, 73-78, 2014.
[38] Nabian, A., Rezazadeh, G., Haddad-Derafshi, M., & Tahmasebi, A. Mechanical behavior of a circular micro plate subjected to uniform hydrostatic and non-uniform electrostatic pressure. Microsystem Technologies, 14(2), 235-240, 2008.
[39] Farajpour, A., Mohammadi, M., Shahidi, A. R., & Mahzoon, M. Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model. Physica E: Low-dimensional Systems and Nanostructures, 43(10), 1820-1825, 2011.
[40] Osterberg, P. M. Electrostatically actuated microelectromechanical test structures for material property measurement. Doctoral dissertation, Massachusetts Institute of Technology, 1995.
[41] Hu, Y. C., Chang, C. M., & Huang, S. C. Some design considerations on the electrostatically actuated microstructures. Sensors and Actuators A: Physical, 112(1), 155-161, 2004.
[42] Murmu, T., & Pradhan, S. C. Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. Journal of Applied Physics, 105(6), 064319, 2009.
[43] Najar, F., El-Borgi, S., Reddy, J. N., & Mrabet, K. Nonlinear nonlocal analysis of electrostatic nanoactuators. Composite Structures, 120, 117-128, 2015.
[44] Saeedivahdat, A., Abdolkarimzadeh, F., Feyzi, A., Rezazadeh, G., & Tarverdilo, S. Effect of thermal stresses on stability and frequency response of a capacitive microphone. Microelectronics Journal, 41(12), 865-873, 2010.
[45] Zhang, G. Y., Gao, X. L., & Wang, J. Z. A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mechanica, 226(12), 4073-4085, 2015.
[46] Ansari, R., Mohammadi, V., Shojaei, M. F., Gholami, R., & Darabi, M. A. A geometrically non-linear plate model including surface stress effect for the pull-in instability analysis of rectangular nanoplates under hydrostatic and electrostatic actuations. International Journal of Non-Linear Mechanics, 67, 16-26, 2014.
[47] Mirkalantari, S. A., Hashemian, M., Eftekhari, S. A., & Toghraie, D. Pull-in instability analysis of rectangular nanoplate based on strain gradient theory considering surface stress effects. Physica B: Condensed Matter, 519, 1-14, 2017.
[48] Rashvand, K., Rezazadeh, G., Mobki, H., & Ghayesh, M. H. On the size-dependent behavior of a capacitive circular micro-plate considering the variable length-scale parameter. International Journal of Mechanical Sciences, 77, 333-342, 2013.
[49] Askari, A. R., & Tahani, M. Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the modified couple stress theory. Physica E: Low-dimensional Systems and Nanostructures, 86, 262-274, 2017.
[50] Eringen, A. C. Nonlocal polar elastic continua. International Journal of Engineering Science, 10(1), 1-16, 1972.
[51] Wang, G. F., & Feng, X. Q. Surface effects on buckling of nanowires under uniaxial compression. Applied Physics Letters, 94(14), 141913, 2009.
校內:2025-06-30公開