| 研究生: |
鄭宇舜 Jheng, Yu-Shun |
|---|---|
| 論文名稱: |
微慣性感測元件於載具轉動角度之估測系統設計及其應用 Design of Adaptive Vehicle Rotate Angle System using Dual MEMS Inertia Sensor and its Application |
| 指導教授: |
沈聖智
Shen, Sheng-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 主動式轉向頭燈 、轉向估側 、壓電元件 、預壓力機構 |
| 外文關鍵詞: | adaptive front lighting system, vehicles rotate angle estimation, piezoelectric element, preload structure |
| 相關次數: | 點閱:174 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計一種不受陸地因素限制並可適用於水下環境的角度估測模組,並整合轉向驅動模組建構成主動式載具轉動角度估測系統。其中,角度估測模組係由兩加速度計整合轉向模型估測演算法計算載具轉向角度。轉向模型估測演算法設計方面可分成三大部分,包括轉彎側傾角修正法、轉彎半徑計算法以及轉動角度評估三大部分。轉彎側傾角修正法,利用三軸加速度感測特性,針對載具轉向所伴隨的側傾角進行補償,以修正重力於側傾角分量的加速度量測值;轉彎半徑計算法,藉由兩加速度計向心加速度量測差值與已知間距,推算載具轉彎半徑;轉動角度評估,結合燈具照明特性,依據其照明距離、出光角與轉彎半徑計算法估測轉向驅動模組最大轉動角度。轉向驅動模組是由兩核心元件組成:對稱型壓電元件(Symmetric Piezoelectric Element)與衍架型(Trussed Structure)預壓力機構組成,其中衍架型預壓力機構設計,則改良一般直線預壓力軌道設計,採以旋轉軌道之力矩方式施以定子與轉子間預壓力,並導入衍架結構分力概念,設計出一三角衍架型正向預壓力機構,轉向驅動模組設計最後,以LabVIEW人機介面整合角度估測模組與轉向驅動模組,設計主動式載具轉動角度估測系統,並可結合照明設計與攝影鏡頭,將主動式轉向頭燈(Adaptive Front Lighting System)概念成功導入水下應用領域。
This thesis presents an adaptive vehicle rotate angle system using dual MEMS inertia sensor, which can apply to underwater environment. The system consist of vehicles rotate angle estimation module and driving module. The angle estimation module calculate the vehicle steering angle model by the two accelerometers. The design of vehicle steering angle model can be divided into three parts, including the roll angle correction method, turning radius calculation method and driving module rotate angle. Turning roll angle correction method calibrate the influence of gravity in centripetal acceleration by the accelerometer multi-axis sensing characteristics. Turning radius calculation method calculate the turning radius by the difference value between two accelerometers distance. The rotate angle and maximum rotate angle of driving module is calculated by illuminating distance, light angle and Turning radius. Driving module is composed of two core components: symmetrical piezoelectric element and trussed preload structure which can improve the general linear preload track design into torque track design. The truss structure utilized a triangular structure to provide a normal force as preload. The software LabVIEW is used to control the adaptive vehicle rotate angle system, and link up driving module and vehicle rotate angle estimation module. The design of active vehicle rotation angle estimation system could be combined with the lighting design and camera, the concept and has been estimated in various applications, such as adaptive front lighting system and unmanned aerial vehicle or autonomous underwater vehicle camera.
【1】 內政部統計處統計通報99年致人傷亡之道路交通事故統計
【2】 T. Aoki, H. Kitamura, K. Miyagawa, and M. Kaneda, Development of Active Headlight System, SAE Paper, 970650, 1997.
【3】 http://www.toyota-global.com/innovation/safety_technology_quality/safety_technology/technology_file/active/afs.html
【4】 Q. Wu, L. Lei, J. Chen, W. Wang, Research on Hardware-in-the-Loop Simulation for Advanced Front-lighting System, IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pp.671~675, 2008.
【5】 鄧亮、陳抱雪、張建彬、顧東超、孫海濤,AFS前照燈彎道旋轉的計算模型,中國機械工程,第22卷第7期,頁864-868,2011。
【6】 H. Rong, J. Gong, W. Wang, Kinematics Model and Control Strategy of Adaptive Front Lighting System, International Conference on Intelligent Computation Technology and Automation, IEEE, pp.70~74, 2009.
【7】 F. Evennou and F. Marx, Advance integration of WIFI and inertial navigation system for indoor mobile positioning, EURASIP J. Appl. Signal Process, vol. 2006, pp. 164-164, 2006.
【8】 X. Yun, E. R. Bachmann, R. B. McGhee, R. H. Whalen, R. L. Roberts, R. G. Knapp, A. J.Healey, and M. J. Zyda, Testing and evaluation od an integrated GPS/INS system for small AUV navigation, Oceanic Engineering, IEEE Journal of, vol. 24, pp. 396-404, 1999.
【9】 陳家榮,慣性感測元件校正方法應用於導航模組之研究,國立成功大學系統與船舶工程學系研究所碩士論文,2009。
【10】 K. Uchino, “Piezoelectric actuators 2006 Expansion from IT/robotics to ecological/energy applications,” Journal of Electroceramics, vol. 20, no. 3-4, pp. 301-311, 2008.
【11】 I. Fukui, T. Hamatsuki, T. Yano, and E. Sato, Impact printer head capable of printing a dot at a distance narrower than a thickness of a printer unit, U.S. Pat, 4589786, 1986.
【12】 T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors, New York, Clarendon Press, Ch1, 1993.
【13】 U. Toshiyuki and H. Toshiro, Miniature magnetostrictive linear actuator based on smooth impact drive mechanism, International Journal of Applied Electromagnetics and Mechanics 28 , pp. 135-141, 2008.
【14】 http://www.nasatech.com/Briefs/Oct01/NPO20984.html
【15】 Physik Instrumente (PI) GmbH & Co. http://www.pi.ws/
【16】 Elliptec Corp. http://www.elliptec.com/
【17】 Konica Minolta Inc. http://konicaminolta.com/
【18】 K. Otokawa, K. Takemura, and T.Maeno, A Multi-Degree of Freedom Ultrasonic Motor Using Single-Phase-Driven Vibrators, Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, vol. 73, no. 2, pp. 577-582, 2007.
【19】 J. Friend, Y. Gouda, K. Nakamura, S. Ueha, A simple bidirectional linear microactuator for nanopositioning - the “Baltan” microactuator, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 53, pp.1160-1168, 2006.
【20】 O. Vyshnevskyy, S. Kovalev, and W. Wischnewskiy, A Novel, Single-Mode Piezoceramic Plate Actuator for Ultrasonic Linear Motors, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 11, pp. 2047-2053, 2005.
【21】 K. Spanner, O. Vyshnevskyy, and W. Wischnewskyy, New Linear Ultrasonic Micromotor for Precision Mechatronic Systems, Physik Instrumente GmbH & Co. KG, Karlsruhe, Germany, 2006.
【22】 W. Lee, C. Kang, D. Paik, B. Ju, S. Yoon, Butterfly-shaped ultra slim piezoelectric ultrasonic linear motor, Sensors and Actuators A 168, pp.127-130, 2011.
【23】 S. T. HO, Characteristics of the Linear Ultrasonic Motor using an Elliptical Shape Stator, Japanese Journal of Applied Physics, vol. 45, no. 7, pp. 6011-6013, 2006.
【24】 C. Lu, T. Xie, T. Zhou, and Y. Chen, Study of a new type linear ultrasonic motor with double-driving feet, Ultrasonics, vol. 44, pp. e585-e589, 2006.
【25】 T. Hemsel, M. Mracek, J. Wallaschek, and P. Vasiljev, A novel approach for high power ultrasonic linear motors, in Proc. IEEE Ultrasonics Symposium, vol. 2, pp. 1161-1164, 2004.
【26】 Roel J. E. Merry, Student Member, IEEE, Niels C. T. de Kleijn, Marinus J. G. van de Molengraft, and Maarten Steinbuch, Senior Member, IEEE, Using a Walking Piezo Actuator to Drive and Control a High-Precision Stage, IEEE/ASME Transactions on Mechatronics, vol. 14, no. 1, Feb, pp.21-30, 2009.
【27】 N. Yazdi, F. Ayazi and K. Najafi, Micromachined Inertial Sensors, in Proc. The IEEE, vol. 86, pp. 1640-1659, 1998.
【28】 D.H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, IET, 1997.
【29】 Z. Djuric, Mechanisms of noise sources in microelectromechanical systems, Microelectronics Reliability, vol. 40, pp. 919-932, 2000.
【30】 S. Lee, G. J. Nam, J. Chae, H. Kim and A.J. Drake, Two-Dimensional Position Detection System With MEMS Accelerometers, Readout Circuitry, and Microprocessor for Padless Mouse Applications, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 13, pp. 1167-1178, 2005.
【31】 S.W. Hsiao, M.C. Tsai, Single-Phase Drive Linear Ultrasonic Motor with Perpendicular Electrode Vibrator, Japanese Journal of Applied Physics, vol. 49 , pp. 024201-1, 2010.
【32】 S.L. Sharp, J.S.N. Paine, J.D. Blotter, Design of a Linear Ultrasonic Piezoelectric Motor, Journal of Intelligent Material Systems and Structures, vol. 21, July, pp.961-973, 2010.
【33】 蔡品群,對稱型壓電致動器應用於陣列式微型光源追蹤系統之研製,國立成功大學系統與船舶工程學系研究所碩士論文,2011。
【34】 黃俊成,對稱型壓電元件於多軸度微型致動器之研製,國立成功大學系統與船舶工程學系研究所碩士論文,2009。