| 研究生: |
梁信惇 Liang, Shen-Dun |
|---|---|
| 論文名稱: |
機械合金暨化學鍍鎳製備具core-shell結構之Mg2Ni儲氫合金及其電化學性質之研究 The electrochemical properties of Mg2Ni hydrogen storage alloy with core-shell structure fabricated by mechanical alloying and chemical plating Ni |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 共同指導教授: |
吉村昌弘
Masahiro Yoshimura |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 儲氫 、鎳氫電池 、機械合金 、化學鍍 、Mg2Ni 合金 |
| 外文關鍵詞: | Hydrogen storage, Ni/MH battery, Mechanical alloying, Chemical plating, Mg2Ni alloy |
| 相關次數: | 點閱:66 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎳氫電池之負極係以儲氫合金為電極材料,其對電池的性能影響甚鉅。在各種儲氫合金中,鎂基儲氫合金具有具有高儲氫量(> 3.6 wt.%),是負極開發的首選材料之一。但鎂基儲氫合金具有相對差的吸放氫動力學能力,且鎂材易氧化而劣化電極性能,因此鎂基儲氫合金作為電極應用時,所得之放電容量常遠低於理論容量。
為改善上述缺點,機械合金與表面處理(如:化學鍍)常被應用於鎂基儲氫合金上,其中,不同化學鍍參數對鎂基儲氫合金充放電性質的影響較少被研究,為此,本研究首先以元素態之鎂與鎳為起始原料,利用機械球磨方式製備具有奈米級晶粒甚至非晶的Mg¬2Ni粉體,再利用化學鍍方式將合金粉體表面披覆鎳層,實驗是探討不同球磨方式(攪拌球磨、震盪球磨)、球磨時間以及不同化學鍍參數(酸鹼度、還原劑濃度、施鍍溫度、施鍍時間)對合成的Mg2Ni合金性質的影響。粉體之相結構與表面形貌是以XRD、SEM、EDS等分析,濾液中鎳、鎂離子含量是使用原子吸收光譜儀(AA)分析,並換算而得披覆層之鎳含量。合金粉末製成之電極亦進行電化學充放電測試與交流阻抗測試。
研究結果顯示,Mg-Ni混合粉經攪拌球磨15 h後有Mg2Ni相生成,隨球磨時間增長至30 h,Mg2Ni相之繞射峰強度亦隨之增強,其最大放電容量值分別為13.05 mAhg-1與32.35 mAhg-1。震盪球磨15 h與30 h之粉體的晶體結構均以結晶性差之Mg2Ni相所組成,惟30 h試樣可以發現來自磨罐與磨球材料之碳化鎢相繞射峰,其最大放電容量為34.39 mAhg-1與17.91 mAhg-1,電容量隨球磨時間減少的原因可能為球磨冷焊效應與磨屑汙染。粉體經化學鍍鎳後,其電容量可大幅提升至100 mAhg-1以上。化學鍍鎳後粉體表面之鍍層由低結晶性之結構所組成,且為鎳、磷共析鍍而成之球狀堆積,其粒徑約100 – 250奈米;鍍層中鎳含量隨還原劑濃度、施鍍溫度、施鍍時間之增加而增加,且於鹼性環境(pH = 9)的施鍍速率較酸性環境(pH = 5)快;但並非鍍層鎳含量越高就可以達到越大的電容量。此現象推測是鍍層披覆密度或厚度增加時,可能伴隨氫傳輸速率的降低,而使電容量降低。此外,鎳含量過高的鍍層常伴隨相對嚴重的絲狀物成長,此行為應是造成電容量衰退的原因之一。
Hydrogen storage alloys as the negative electrode of Ni/MH battery would significantly affect the properties of battery. Mg-based hydrogen storage alloy is the primary material to be developed because of its relatively high hydrogen storage content (> 3.6 wt. %). But Mg-based hydrogen storage alloy has a relatively poor properties of absorbing and releasing hydrogen, and it is easy to be oxidized and formed Mg(OH)2. Therefore, Mg-based hydrogen storage alloy had a discharge capacity that usually much lower than the theoretical capacity. For improving these disadvantages, mechanical alloying and surface modification were usually applied to Mg-based hydrogen storage alloy of chemical plating were changed.
In this study, the effects of chemical plating nickel on the electro- chemical properties of Mg-based hydrogen storage alloy were investigated. Two types of ball milling (shaking milling and attrition milling) were used to mill starting material of pure Mg and Ni. Subsequently Ni was coated on the surface of milled Mg-Ni alloy powders by chemical plated with different parameters (starting pH value, concentration of sodium phosphinate, plating temperature and plating time). The crystal structure of Mg-Ni alloy powders were analyzed by X-ray diffraction method and the microstructures including powders’ cross section were observed by SEM. The contents of Ni and Mg ion in filtrates were measured by Atomic absorption spectrophotometer (AA). The charge/discharge test and electrochemical impedance spectroscopy test of electrodes made by Mg-Ni alloy powders were also analyzed.
The results showed that the Mg2Ni alloy formed as the Mg-Ni mixed powders milled by attritor for 15 h, and the intensity of Mg2Ni diffraction peaks increased as the milling time increased to 30 h. The maximum discharge capacities of electrodes made by these two alloy powders (milled by 15 h and 30 h) were 13.05 mAhg-1 and 32.35 mAhg-1, respectively. On the other hand, Mg2Ni phase with low crystallity formed as the Mg-Ni mixed powders shaking milled for 15 h and 30 h. The WC diffraction peaks due to the milling vial and ball were also found in powders with 30 h milled. The maximum discharge capacities of electrodes made by these two alloy powders (shaking milled for 15h and 30 h) were 34.39 mAhg-1 and 17.91 mAhg-1, respectively. The reasons for the decreasing of discharge capacity as milling time increased might be the cold welding effect and the pollution of WC from milling vial and balls.
After chemical plated nickel with sodium phosphinate as reductant regent, the maximum discharge capacity of Mg2Ni alloy increased to above 100 mAhg-1. The coated layer had low crystallity, piled by Ni-P co-deposited spheres, which diameter were around 100 to 250 nm. The nickel contents in coated layer increased as the concentration of sodium phosphinate, plating temperature and plating time increased. The plating rate in alkali solution (pH = 9) was higher than that in acid solution (pH = 5). The discharge capacities did not increase simply as the reduced nickel contents increased, it might due to the decrease of the rate of hydrogen transportation as the plating density and thickness of coated layer increased. In addition, the silk-like morphology formed on the surface of coated particles accompanies with the increase of reduced nickel contents, and this is the one of the reason that causing the decrease of discharge capacity.
[1] Y.Q.Lei, Y.M.Wu, Q.M.Yang, J.Wu, Q.D.Wang, Z. Phys. Chem. Bd. 183 (1994) 379 - 384.
[2] C. Iwakura, H. Inoue, S. Nohara, Hydrogen-Metal Systems: Electrochemical Reactions (Fundamentals and Applications), in: K.H.J. Buschow, W.C. Robert, C.F. Merton, I. Bernard, J.K. Edward, M. Subhash, V. Patrick (Eds.) Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 2001, pp. 3923-3941.
[3] A. Züttel, Materials for hydrogen storage, Mater. today, 6 (2003) 24-33.
[4] N.H. Goo, J.H. Woo, K.S. Lee, Mechanism of rapid degradation of nanostructured Mg2Ni hydrogen storage alloy electrode synthesized by mechanical alloying and the effect of mechanically coating with nickel, J. Alloys. Comp. 288 (1999) 286-293.
[5] N. Cui, B. Luan, H.K. Liu, H.J. Zhao, S.X. Dou, Characteristics of magnesium-based hydrogen-storage alloy electrodes, J. Power Sources, 55 (1995) 263-267.
[6] H. Niu, D.O. Northwood, Enhanced electrochemical properties of ball-milled Mg2Ni electrodes, Int. J. Hydrogen Energy, 27 (2002) 69-77.
[7] J.-W. Liu, H.-T. Yuan, J.-S. Cao, Y.-J. Wang, Effect of Ti-Al substitution on the electrochemical properties of amorphous MgNi-based secondary hydride electrodes, J. Alloys. Comp. 392 (2005) 300-305.
[8] K. Kadir, T. Sakai, I. Uehara, Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 type structure, J. Alloys. Comp. 302 (2000) 112-117.
[9] N. Cui, B. Luan, H.J. Zhao, H.K. Liu, S.X. Dou, Synthesis and electrode characteristics of the new composite alloys Mg2Ni-xwt.% Ti2Ni, J. Alloys. Comp. 240 (1996) 229-234.
[10] S. Nohara, N. Fujita, S.G. Zhang, H. Inoue, C. Iwakura, Electrochemical characteristics of a homogeneous amorphous alloy prepared by ball-milling Mg2Ni with Ni, J. Alloys. Comp. 267 (1998) 76-78.
[11] S.S. Han, H.Y. Lee, N.H. Goo, W.T. Jeong, K.S. Lee, Improvement of electrode performances of Mg2Ni by mechanical alloying, J. Alloys. Comp. 330-332 (2002) 841-845.
[12] J.L. Luo, N. Cui, Effects of microencapsulation on the electrode behavior of Mg2Ni-based hydrogen storage alloy in alkaline solution, J. Alloys. Comp. 264 (1998) 299-305.
[13] T. Abe, T. Tachikawa, Y. Hatano, K. Watanabe, Electrochemical behavior of amorphous MgNi as negative electrodes in rechargeable Ni-MH batteries, J. Alloys. Comp. 330-332 (2002) 792-795.
[14] J.J. Reilly, R.H. Wiswall, Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4, Inorg. Chem. 7 (1968) 2254-2256.
[15] J.H.N. van Vucht, F.A. Kuijpers, H.C.A.M. Bruning, Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds, Philips Res. Rep. 25: 133-40(Apr 1970).
[16] J.J. Reilly, R.H. Wiswall, Formation and properties of iron titanium hydride, Inorganic Chemistry, 13 (1974) 218-222.
[17] R. Wiswall, Hydrogen storage in metals, in: G. Alefeld, J. Völkl (Eds.) Hydrogen in Metals II, Springer Berlin / Heidelberg, 1978, pp. 201-242.
[18] Y. Feng, L. Jiao, H. Yuan, M. Zhao, Effect of Al and Ce substitutions of the electrochemical properties of amorphous MgNi-based alloy electrodes, Int. J. Hydrogen Energy, 32 (2007) 1701-1706.
[19] 胡子龍, 貯氫材料, 化學工業出版社, 2002.
[20] K. Hong, The development of hydrogen storage alloys and the progress of nickel hydride batteries, J. Alloys. Comp. 321 (2001) 307-313.
[21] M. Martin, C. Gommel, C. Borkhart, E. Fromm, Absorption and desorption kinetics of hydrogen storage alloys, J. Alloys. Comp. 238 (1996) 193-201.
[22] R.B. Gupta, Hydrogen fuel: production, transport, and storage, CRC Press, 2008.
[23] J. Kleperis, G. Wójcik, A. Czerwinski, J. Skowronski, M. Kopczyk, M. Beltowska-Brzezinska, Electrochemical behavior of metal hydrides, J. Solid State Electrochem. 5 (2001) 229-249.
[24] A. Anani, A. Visintin, K. Petrov, S. Srinivasan, J.J. Reilly, J.R. Johnson, R.B. Schwarz, P.B. Desch, Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries, J. Power Sources, 47 (1994) 261-275.
[25] mpoweruk.com, Accumulator and battery comparisons.
[26] L.B. Wang, J.B. Wang, H.T. Yuan, Y.J. Wang, Q.D. Li, An electrochemical investigation of Mg1-xAlxNi (0 <= x <= 0.6) hydrogen storage alloys, J. Alloys. Comp. 385 (2004) 304-308.
[27] J.L. Bobet, E. Akiba, Y. Nakamura, B. Darriet, Study of Mg-M (M=Co, Ni and Fe) mixture elaborated by reactive mechanical alloying -- hydrogen sorption properties, Int. J. Hydrogen Energy, 25 (2000) 987-996.
[28] T. Sakai, I. Uehara, H. Ishikawa, R&D on metal hydride materials and Ni-MH batteries in Japan, J. Alloys. Compounds, 293-295 (1999) 762-769.
[29] C. Iwakura, T. Asaoka, H. Yoneyama, T. Sakai, K. Oguro, H. Ishikawa, Electrochemical characteristics of LaNi5 system hydrogen-absorbing alloys as negative electrode materials for nickel-hydrogen batteries., Nippon Kagaku Kaishi, 8 (1988) 1482 - 1488.
[30] J. Balej, Determination of the oxygen and hydrogen overvoltage in concentrated alkali hydroxide solutions, Int. J. Hydrogen Energy, 10 (1985) 365-374.
[31] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, 1974.
[32] N. Cui, B. Luan, H.K. Liu, S.X. Dou, Discharge behaviour of Mg2Ni-type hydrogen-storage alloy electrodes in 6 M KOH solution by electrochemical impedance spectroscopy, J. Power Sources, 63 (1996) 209-214.
[33] J. Benjamin, Dispersion strengthened superalloys by mechanical alloying, Metall. Mater. Trans. B, 1 (1970) 2943-2951.
[34] J. Benjamin, T. Volin, The mechanism of mechanical alloying, Metall. Mater. Trans. B, 5 (1974) 1929-1934.
[35] A.A. Nayeb-Hashemi, J.B. Clark, The Mg-Ni (Magnsium-NIckel) system, Bulletin of Alloy Phase Diagrams, 6 (1985) 233-244.
[36] W. Liu, H. Wu, Y. Lei, Q. Wang, J. Wu, Amorphization and electrochemical hydrogen storage properties of mechanically alloyed Mg-Ni, J. Alloys. Comp. 252 (1997) 234-237.
[37] A.K. Singh, A.K. Singh, O.N. Srivastava, On the synthesis of the Mg2Ni alloy by mechanical alloying, J. Alloys. Comp. 227 (1995) 63-68.
[38] H. Inoue, S. Hazui, S. Nohara, C. Iwakura, Preparation and electrochemical characterization of Mg2Ni alloys with different crystallinities, Electrochi. Acta, 43 (1998) 2221-2224.
[39] T. Kohno, M. Kanda, Effect of Partial Substitution on Hydrogen Storage Properties of Mg2Ni Alloy, J. Electrochem. Soc. 144 (1997) 2384-2388.
[40] X. Shengqi, L. Pengliang, Z. Jingen, Z. Ruihua, W. Ning, Research on the structures and discharge capacities of Mg-Ni alloy with different Ni contents synthesized by high-energy ball milling, Mater. Sci. Eng. A, 418 (2006) 81-85.
[41] Y. Zhang, S.-K. Zhang, L.-X. Chen, Y.-Q. Lei, Q.-D. Wang, The study on the electrochemical performance of mechanically alloyed Mg-Ti-Ni-based ternary and quaternary hydrogen storage electrode alloys, Int. J. Hydrogen Energy, 26 (2001) 801-806.
[42] B. Khorkounov, A. Gebert, C. Mickel, L. Schultz, Improving the performance of hydrogen storage electrodes based on mechanically alloyed Mg61Ni30Y9, J. Alloys. Comp. 458 (2008) 479-486.
[43] A. Takasaki, K. Sasao, Hydrogen absorption and desorption by Mg67-xCaxNi33 powders prepared by mechanical alloying, J. Alloys. Comp. 404-406 (2005) 431-434.
[44] J. Guo, K. Yang, L. Xu, Y. Liu, K. Zhou, Hydrogen storage properties of Mg76Ti12Fe12-xNix (x=0,4,8,12) alloys by mechanical alloying, Int. J. Hydrogen Energy, 32 (2007) 2412-2416.
[45] Q.-F. Tian, Y. Zhang, H.-L. Chu, L.-X. Sun, F. Xu, Z.-C. Tan, H.-T. Yuan, T. Zhang, The electrochemical performances of Mg0.9Ti0.1Ni1-xPdx (x = 0-0.15) hydrogen storage electrode alloys, J. Power Sources, 159 (2006) 155-158.
[46] T. Sakai, H. Ishikawa, K. Oguro, C. Iwakura, H. Yoneyama, Effects of Microencapsulation of Hydrogen Storage Alloy on the Performances of Sealed Nickel/Metal Hydride Batteries, J. Electrochem. Soc. 134 (1987) 558-562.
[47] C.Y. Wang, P. Yao, D.H. Bradhurst, H.K. Liu, S.X. Dou, Surface modification of Mg2Ni alloy in an acid solution of copper sulfate and sulfuric acid, J. Alloys. Comp. 285 (1999) 267-271.
[48] J. Chen, D.H. Bradhurst, S.X. Dou, H.K. Liu, The effect of chemical coating with Ni on the electrode properties of Mg2Ni alloy, J. Alloys. Comp. 280 (1998) 290-293.
[49] C. Rongeat, M.H. Grosjean, S. Ruggeri, M. Dehmas, S. Bourlot, S. Marcotte, L. Roué, Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries, J. Power Sources, 158 (2006) 747-753.
[50] M. Anik, I. Akay, S. Topcu, Effect of electroless nickel coating on the electrochemical hydrogen storage characteristics of Al and Zr including Mg-based alloys, Int. J. Hydrogen Energy, 34 (2009) 5449-5457.
[51] V.M. Dubin, Y. Shacham-Diamand, B. Zhao, P.K. Vasudev, C.H. Ting, Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration, J. Electrochem. Soc. 144 (1997) 898-908.
[52] S.-J. Lee, C.-H. Huang, Y.-P. Chen, Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell, J. Mater. Process. Technol. 140 (2003) 688-693.
[53] G. Gutzeit, An Outline of the Chemistry Involved inthe Process of Catalytic Nickel Deposition from Aqueous Solution, Plating, 46 (1959) 1158 - 1164.
[54] H.-H. Hsu, C.-C. Hsieh, M.-H. Chen, S.-J. Lin, J.-W. Yeh, Displacement Activation of Tantalum Diffusion Barrier Layer for Electroless Copper Deposition, J. Electrochem. Soc. 148 (2001) C590-C598.
[55] 儀測科技國際股份有限公司, 電化學阻抗頻譜的基本原理, 2009.
[56] 陳軍, 陶占良, 鎳氫二次電池, 化學工業出版社, 2006.
[57] H.-S. Yu, S.-F. Luo, Y.-R. Wang, A comparative study on the crystallization behavior of electroless Ni---P and Ni---Cu---P deposits, Surf. Coat. Technol. 148 (2001) 143-148.
[58] P. Sampath Kumar, P. Kesavan Nair, Studies on crystallization of electroless Ni---P deposits, J. Mater. Process. Technol. 56 (1996) 511-520.
[59] N. Cui, J.L. Luo, K.T. Chuang, Study of hydrogen diffusion in [alpha]- and [beta]-phase hydrides of Mg2Ni alloy by microelectrode technique, J. Electroanal. Chem. 503 (2001) 92-98.