| 研究生: | 羅子軒 Lo, Tzu-Hsuan | 
|---|---|
| 論文名稱: | 截段資料二項機率之估計 Estimation of Binomial Proportion in Two-Stage Clinical Trial | 
| 指導教授: | 嵇允嬋 Chi, Yun-Chan | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 管理學院 - 統計學系 Department of Statistics | 
| 論文出版年: | 2005 | 
| 畢業學年度: | 93 | 
| 語文別: | 英文 | 
| 論文頁數: | 36 | 
| 中文關鍵詞: | 二階段設計 、截斷二項分布 、涵蓋率 | 
| 外文關鍵詞: | Coverage probability, Truncated binomial distribution, Two-stage design | 
| 相關次數: | 點閱:214 下載:1 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
  在新藥研發的第二期臨床實驗中,研究人員經常利用二階段設計評估新藥是否有效。在這個設計中,將病患服用藥物之後的反應分為有效與無效兩種情況。在第一個階段中,如果服用新藥之後呈現有效反應的病患總人數超過某一個特定值,才會進行第二階段的實驗,因此第一階段的反應變數服從截斷二項分配,而第二階段的反應變數服從二項分配。本文將利用Wald、score、exact信賴區間的方法估計二階段設計中的反應變數的成功機率,並且利用模擬,研究這些信賴區間的準確性。結果顯示,score信賴區間的涵蓋機率比另外兩個信賴區間更接近信賴水準,因此本文建議利用score信賴區間估計二階段設計中的反應變數的成功機率。
  Generally, a two-stage design is employed in Phase II clinical trials to avoid giving patients an ineffective drug. If the number of patients with significant improvement, which is a binomial response, is greater than a pre-specified value in first stage then the binomial response in second stage is also observed. The Wald, score, and exact intervals are constructed for estimating success probability based on the two binomial responses from a two-stage design where the binomial response in first stage follows truncated binomial distribution. The performance of these interval estimates is investigated by simulation. The results recommend the use of score interval since its coverage probability is more close to the nominal confidence level than the other two interval estimates.
Agresti, A. (2002). Categorical Data Analysis. John Wiley and Sons, Inc., 2nd Ed.
Agresti, A. and Coull, B. A. (1998). Approximate is better than `exact' for interval estimation of binomial proportions. The American Statistician, 52, 119-126.
Blyth, C. R. (1986). Approximate binomial confidence limits. Journal of the American Statistical Association, 81, 843-855.
Brown, L. D., Cai, T. and DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16, 101-133.
Brown, L. D., Cai, T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions. The Annals of Statistics, 30, 160-201.
Casella, G. (1986). Refining binomial confidence intervals. Canadian Journal of Statistics, 14, 113-129.
Casella, G. and Berger, R. (2002). Statistical Inference. Duxbury, 2nd Ed.
Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26, 404-413.
Newcombe, R. (1998). Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 17, 857-872.
Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. American Statistical Association, 22, 209-212.