| 研究生: |
林嘉峻 Lin, Chia-Chun |
|---|---|
| 論文名稱: |
以CuInSe2奈米柱製備核殼結構二極體特性之研究 Study of Core-Shell Diode Characteristic with CuInSe2 Nanowire |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 銅銦硒奈米柱 、氧化銦錫 、核殼結構 |
| 外文關鍵詞: | CuInSe2, PEDOT, core-shell |
| 相關次數: | 點閱:118 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於製備一維單晶二硒化銅銦奈米柱陣列並搭配有機導電漿料PEDOT形成核殼結構,應用於太陽能電池元件的吸收層,和以往平面結構的吸收層相比,奈米柱擁有更加突出的光電特性,期望可以有效提升元件整體的光電轉換效率。
本研究的成果如下,首先是銅銦硒奈米柱透過後續模板移除得到完整奈米柱,並疊上有機導電漿料。最後由電性量測得到,疊上導電漿料與未疊上漿料的結構相比,呈現更好的二極體特性,得到Io=36.9 nA。再來是將奈米柱結構做退火處理來改善結晶品質,由XRD量測得到CIS(112)之FWHM為0.425,晶粒大小為19.3nm,得到24.25:24.45: 51.30劑量比,而電性量測得到Io=49.1nA。吾人以氧化銦錫取代有機漿料,與BYK混合後,氧化銦錫與奈米柱之間的接觸角由原本的79.22度降低至10.11度,消除原本疏水性太過強烈的問題,亦有蕭特基二極體之特性。
CuInSe2 nanowire photovoltaic has been the subject of research with a view to enhancing the photo absorption efficiency and reducing the material consumption compared with bulk and thin-film PV. However, its surface recombination is a problem. Therefore, we use the core-shell structure to solve the problem. In this study, we employ the annealing process and tune the temperature to improve the crystallization of CIS nanowire. In I-V measurement, we obtained leakage current Io near 49.1nA. Then, we fabricated core-shell structure with PEDOT/CIS material to reduce the defects near the surface of nanowire. In I-V measurement, we obtained leakage current Io near 36.9nA.
【1】 Perez, Richard, and Marc Perez. "A fundamental look at energy reserves for the planet." The IEA SHC Solar Update 50.2 (2009).
【2】 楊德仁,“太陽能電池材料“,五南圖書出版股份有限公司, 2008。
【3】 W. Eisele, A. Ennaoui, P. Schubert-Bischoff, M. Giersig, C. Peltenkofet , J. Krausd, M. Lux-Steiner, T. Riedle, N. Esse, S. Zweigart, F. Karg, "New cadmium-free buffer layers as heterojunction partners on Cu (In, Ga)(S, Se) 2 thin film solar cells." Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE. IEEE, (2000).
【4】 Ghosh, B., D. P. Chakraborty, and M. J. Carter. "A novel back-contacting technology for thin films." Semiconductor science and technology 11.9 (1996): 1358.
【5】 Tambo, H., and H. Asahi. "Control of GaN nanorod diameter by changing growth temperature during molecular-beam epitaxy." Journal of Crystal Growth383 (2013): 57-62.
【6】 Ishizawa, Shunsuke, Akihiko Kikuchi, and Katsumi Kishino. "Selective growth of GaN nanocolumns on predeposited Al patterns by rf-plasma-assisted molecular-beam epitaxy " physica status solidi (c) 5.6 (2008): 1879-1882.
【7】 Shunfeng Li, Xue Wang, Sönke Fündling, Milena Erenburg, Johannes Ledig, Jiandong Wei, Hergo H. Wehmann , Andreas Waag, Werner Bergbauer, Martin Mandl, Martin Strassburg, Achim Trampert, Uwe Jahn, Henning Riechert, Holger Jönen, and Andreas Hangleiter, "Nitrogen-polar core-shell GaN light-emitting diodes grown by selective area metalorganic vapor phase epitaxy." Applied Physics Letters101.3 (2012): 032103.
【8】 Wang, Zhong L. "Characterizing the structure and properties of individual wire-like nanoentities." Advanced Materials 12.17 (2000): 1295-1298.
【9】 Hu, Jiangtao, Teri Wang Odom, and Charles M. Lieber. "Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes."Accounts of chemical research 32.5 (1999): 435-445.
【10】 Po-Lin Chen, Jun-Kai Chang, Cheng-Tzu Kuo, Fu-Ming Pan, "Anodic aluminum oxide template assisted growth of vertically aligned carbon nanotube arrays by ECR-CVD." Diamond and related materials 13.11 (2004): 1949-1953.
【11】 Po-Lin Chen, Jun-Kai Chang, Fu-Ming Pan, Cheng-Tzu Kuo, Po-Lin Chen, Jun-Kai Chang, Fu-Ming Pan, Cheng-Tzu Kuo, "Tube number density control of carbon nanotubes on anodic aluminum oxide template." Diamond and related materials 14.3 (2005): 804-809.
【12】 Xin-Yi Zhang, Li-de Zhang, Guo-Wen Meng, Guang-Hai Li, Neng-Yun Jin-Phillipp, and Fritz Phillipp, "Synthesis of ordered single crystal silicon nanowire arrays." Advanced Materials 13.16 (2001): 1238.
【13】 Melissa S. Sander* and Le-Shon Tan,"Nanoparticle Arrays on Surfacesfabricated using anodic alumina films as templates." Advanced Functional Materials 13.5 (2003): 393-397.
【14】 Inoue, S., Chu, S. Z., Wada, K., Li, D., & Haneda, H.,"New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum." Science and Technology of Advanced Materials 4.4 (2003): 269-276.
【15】 Fang, Z., Wang, Y., Peng, X., Liu, X., & Zhen, C., "Structural and optical properties of ZnO films grown on the AAO templates." Materials Letters 57.26 (2003): 4187-4190.
【16】 Sander, M. S., Prieto, A. L., Gronsky, R., Sands, T., & Stacy, A. M., "
Fabriacationof High-Density, High Aspect Ratio, Large-Area Bismuth
Telluride Nanowire Arrays by Electrodeposition into Porous Anodic Alumina Templates." Advanced Materials 14.9 (2002): 665-667.
【17】 Shin, S., Kim, B. S., Kim, K. M., Kong, B. H., Cho, H. K., & Cho, H. H., "Tuning the morphology of copper nanowires by controlling the growth processes in electrodeposition." Journal of Materials Chemistry 21.44 (2011): 17967-17971.
【18】 Spurgeon, Joshua M., Harry A. Atwater, and Nathan S. Lewis. "A comparison between the behavior of nanorod array and planar Cd (Se, Te) photoelectrodes."The Journal of PhysicalChemistry C 112.15 (2008): 6186-6193.
【19】 Li, A. P., Müller, F., Birner, A., Nielsch, K., & Gösele, U., "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina." Journal of applied physics84.11 (1998): 6023-6026.
【20】 Yang, Y., Chen, H., Mei, Y., Chen, J., Wu, X., & Bao, X., "CdS nanocrystallites prepared by chemical and physical templates." Acta materialia 50.20 (2002): 5085-5090.
【21】 Masuda, Hideki, and Kenji Fukuda. "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina." science268.5216 (1995): 1466-1468.
【22】 陳亮羽,“藉由模板輔助法生成奈米陣列之研究”,國立清華大學化學工程研究所碩士論文,(2004)。
【23】 Delendik, K., Emeliantchik, I., Litomin, A., Rumyantsev, V., & Voitik, O., "Aluminium oxide microchannel plates." Nuclear Physics B-Proceedings Supplements 125 (2003): 394-399.
【24】 劉志毅,“長程有序氧化鋁奈米孔洞陣列之製造與機制”,國立台灣大學物理研究所博士論文,(2003)。
【25】 Thompson, G. E. "Porous anodic alumina: fabrication, characterization and applications." Thin solid films 297.1 (1997): 192-201.
【26】 Haug, Franz-Josef., "Development of Cu (In, Ga) Se2 superstrate thin film solar cells. " Diss. Universität Ulm, (2001).
【27】 Sheppard, C.J., "Formation of CuIn(Se,S)2 and Cu(In,Ga)(Se,S)2 thin films by chalcogenization of sputtered metallic alloys. " PhD thesis, University of Johannesburg, Department of Physics, (2008).
【28】 Anderson, T., and B. J. Stanbery. "Processing of CuInSe2-based solar cells: characterization of deposition processes in terms of chemical reaction analyses." Subcontractor Report (1999): 01-61.
【29】 Müller, J., J. Nowoczin, and H. Schmitt. "Composition, structure and optical properties of sputtered thin films of CuInSe 2." Thin Solid Films 496.2 (2006): 364-370.
【30】 Terasako, T., Inoue, S., Kariya, T., & Shirakata, S., "Three-stage growth of Cu–In–Se polycrystalline thin films by chemical spray pyrolysis." Solar energy materials and solar cells91.12 (2007): 1152-1159.
【31】 Calixto, M. E., Dobson, K. D., McCandless, B. E., & Birkmire, R. W., "Controlling growth chemistry and morphology of single-bath electrodeposited Cu (In, Ga) Se2 thin films for photovoltaic application." Journal of The Electrochemical Society 153.6 (2006): G521-G528.
【32】 Guillén, C., and J. Herrero. "Structure, morphology and photoelectrochemical activity of CuInSe 2 thin films as determined by the characteristics of evaporated metallic precursors." Solar energy materials and solar cells 73.2 (2002): 141-149.
【33】 Green, M. A., & Emery, K. "Solar cell efficiency tables (version 36)." Progress in Photovoltaics: Research and Applications 18.5 (2010): 346-352.
【34】 Van Cuong, Nguyen. "Study on the mechanical properties of nickel coating electrodeposited in electrolyte mixed with supercritical carbon dioxide. " Diss. Ph. D, National Taipei University of Technology, Taiwan, (2012).
【35】 劉庭宇,“電流模式與介面活性劑對超臨界電鍍鎳鍍層之影響探討”,國立台北科技大學製造科技研究所,(2011)。
【36】 Chang, P. C., Fan, Z., Wang, D., Tseng, W. Y., Chiou, W. A., Hong, J., & Lu, J. G., "ZnO nanowires synthesized by vapor trapping CVD method." Chemistry of materials 16.24 (2004): 5133-5137.
【37】 Yoshida, H., Sone, M., Mizushima, A., Abe, K., Tao, X. T., Ichihara, S., & Miyata, S., Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution." Chemistry Letters 11 (2002): 1086-1087.
【38】 D. Pletcher, F.C. Walsh,"Industrial Electrochemistry(2nd edn.) ",Chapman and Hall, Paris (1990), p. 437
【39】 S. M. Sze and K. K. Ng, "Physics of Semiconductor Devices", John Wiley, (2007).
【40】 Pankove, Jacques I., "Optical Processes in Semiconductors. Courier Corporation, (1971).
【41】 G. K. Reeves, H. B. Harrison, "Obtainng the Specific Contact Resistance from Transmission Line Model Measurements.", IEEE Electron Dev. Lett. EDL-3, p.111 (1982)
【42】 Cullity, Bernard Dennis., “Elements of X-ray Diffraction”,AddisonWesley, Reading, Mass., (1978).
【43】 Hernandez-Pagan, Emil A., Wei Wang, and Thomas E. Mallouk. "Template electrodeposition of single-phase p-and n-type copper indium diselenide (CuInSe2) nanowire arrays." Acs Nano 5.4 (2011): 3237-3241.
【44】 Fan, P., Liang, G. X., Cai, X. M., Zheng, Z. H., & Zhang, D. P., "The influence of annealing temperature on the structural, electrical and optical properties of ion beam sputtered CuInSe2 thin films."Thin Solid Films 519.16 (2011): 5348-5352.
【45】 Tang, J., Huo, Z., Brittman, S., Gao, H., & Yang,P., "Solution-processed core-shell nanowires for efficient photovoltaic cells." Nature nanotechnology 6.9 (2011): 568-572.
校內:2021-07-01公開