簡易檢索 / 詳目顯示

研究生: 洪威甫
Hong, Wei-Fu
論文名稱: 探討調節磷酸酶PP2A調節次單元 B56γ3 進核的訊息路徑
Investigate signaling pathways regulating the nuclear localization of the B56γ3 regulatory subunit of protein phosphatase 2A
指導教授: 蔣輯武
Chiang, Chi-Wu
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 64
中文關鍵詞: 蛋白質磷酸酶2A型(PP2A)雙分子瑩光互補作用調節性次單元B細胞內分布位置
外文關鍵詞: PP2A, BiFC, regulatory subunit B, subcellular localization
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷酸酶PP2A是一種絲胺酸/蘇胺酸磷酸酶,並且調節許多細胞的功能,組成PP2A的三個次單元分別是構成結構的A次單元,負責催化功能的C次單元,以及種類相當多樣的調節性B次單元。雖然B次單元被認為可以控制PP2A在細胞中座落的位置,但其本身在細胞內座落位置如何調節的分子機制還是未知的。這裡我們報告有關利用缺失突變與雙分子螢光互補作用分析出調節B56γ3調節次單元座落在細胞核的功能位與訊息傳遞路徑。我們發現至少有兩個區域影響了B56γ3座落在核的分佈,包括預測的NLS1和NLS2之間的連接序列(aa 413 to aa461) 與 預測的NLS1上游的100個胺基酸(aa306 to aa405) ,因為去掉這兩個區域之一都會增加座落以細胞質為主的B56γ3。
    入核轉運受體importin-α是一種轉接蛋白(adaptor protein),透過importin-α結合帶有NLS的分子與importin-β結合,使得帶有NLS的分子能被運輸至細胞核內。在in vitro pull down的實驗中顯示全長的B56γ3會分別與importin -α and –β有交互作用,而當失去aa306-aa405這100個胺基酸則會降低B56γ3與importin -α and –β的交互作用但失去在aa41到461的區域則不會影響importin -α及importin –β的的結合。為了瞭解調節B56γ3的進核的分子機制,進一步的利用處理訊息傳遞激脢抑制劑篩選出可能參與在調節B56γ3座落在核的訊息傳遞路徑,我們發現了CK1 的抑制劑顯著的減少B56γ3在核的分佈,接著我們利用shRNA降低CK1δ表現,發現其的確降低了B56γ3在核的分佈。免疫沉澱實驗證明了B56γ3與CK1δ有交互作用,並且在in vitro CK1δ可以磷酸化B56γ3在Ser440,S440是一個被序列分析預測可能的CK1催化的磷酸位點,且座落在我們發現可調節B56γ3進核的NLS1和NLS2之間連接序列區域中。於是我們研究B56γ3的磷酸化缺陷突變(S440A) 的影響,發現其增加了B56γ3在細胞質的分佈,而模仿磷酸化的突變(S440D)則大量增加在細胞核的分佈。此外,我們也發現抑制CK1時,會降低了B56γ3的蛋白質量,而處理了蛋白水解脢抑制劑MG132則恢復了受CK1抑制而降低的B56γ3蛋白的量。此外,磷酸化的突變S440A及S440D則對由抑制CK1導致的降解產生抗性。總結 , 我們的結果發現了CK1δ透過磷酸化調節PP2A的B56γ3調節次單元的進核並且控制其蛋白質穩定度。

    Protein phosphatase 2A (PP2A) is a major cellular serine/threonine phosphatase and regulates many cellular processes. The PP2A holoenzyme consists of a scaffolding A subunit, a catalytic C subunit, and a variable regulatory B subunit. Although the regulatory B subunit has been proposed to control subcellular localization of PP2A, the mechanism underlying subcellular localization of the regulatory B subunit remains largely unknown. Here, we report the investigation on the functional motifs and signaling pathways regulating nuclear localization of the B56γ3 regulating subunit using deletion mutation and bimolecular fluorescence complementation (BiFC) analysis. We found at least two domains involved in nuclear localization of the B56γ3, including the linker region (aa 413 to aa 461) between the putative NLS1 and NLS2 and the region encompassing aa 306 to aa 405. Loss of either of the two domains impaired B56γ3 nuclear localization. More, B56γ3 directly interacts with both importin -α and –β in vitro, and loss of the region encompassing aa 306 to aa 405, but not the linker region, markedly abolished the interaction. Further, we screened a panel of kinase inhibitors for signaling pathways which may be involved in nuclear localization of B56γ3 and found that inhibition of casein kinase I (CK1), but not CDK2, MEK2, and PI3K/AKT, significantly reduced nuclear localization of B56γ3. Consistently, knockdown of CK1δ with short hairpin RNA(shRNA) reduced B56γ3 nuclear localization. Reciprocal co-immunoprecipitation analysis demonstrated that B56γ3 was associated with CK1δ, and CK1δ catalyzed phosphorylation of B56γ3 at Ser440 in vitro. Overexpression of CK1δ increased levels of phosph-S440 of B56γ3, whereas knockdown of CK1δ reduced levels of phospho-S440 of B56γ3. Since Ser440 is located within the linker domains found to be involved in regulating B56γ3 nuclear localization, we investigated the phosphorylation defective mutant (S440A) of B56γ3 and found markedly increased cytoplasmic localization of B56γ3 by this mutation. In contrast, a phosphorylation mimetic mutant (S440D) of B56γ3 showed substantially increased nuclear localization as compared to wildtype B56γ3. Inhibition of CK1 reduced the phosphorylation level of phospho-Ser440, and unexpectedly, also reduced the protein level of B56γ3. Treatment of cells with protease inhibitor MG132 restored the B56γ3 protein levels, whereas both B56γ3S440A and B56γ3S440D were resistant to CK1 inhibition-mediated degradation and were not affected by MG132 treatment. In summary, our data demonstrate that CK1δ phosphorylates B56γ3 at Ser440 to regulate the nuclear localization of B56γ3 and may control B56γ3 protein stability.

    Abbreviation List I 摘要 II Abstract IV Table of Contents VII List of figures IX Introduction 1 Protein Phosphatase 2A 1 The A scaffold subunit of PP2A 1 The C catalytic subunit of PP2A 2 The B’ regulatory subunits of PP2A 3 The Nuclear Import Pathway 4 The predicted NLS of the B563 regulatory subunit 5 Casein kinase 1 6 Bimolecular Fluorescence Complementation (BiFC) 7 Objectives 8 Materials and Methods 9 Antibodies employed include: 9 Reagents employed include: 9 DNA constructs 10 Cell culture 13 Virus preparation 14 Selection of cells stably expressing CK1δ shRNA 14 Immunofluorescence 15 Western Blotting 15 Immunoprecipitation 16 In vitro kinase assay 17 Recombinant proteins 18 In vitro pull-down analysis 18 Results 20 Two domains encompassing aa306-aa405 and aa413-aa461, respectively, are important for regulating nuclear localization of B56γ3 20 The domain encompassing aa356-aa380 and the domain encompassing aa437-aa446 play a key role in regulating nuclear localization of B56γ3 21 B56γ3 directly interacts with importin-α and –β, and loss of the aa306-aa405 of B56γ3 impaired interaction with importin-α and –β 22 CK1δ regulates nuclear localization of B56γ3 23 CK1δ phosphorylates B56γ3 at Ser440 24 Phosphorylatetion of B56γ3 at Ser440 by CK1δ regulates B56γ3 protein stability 25 In summary 26 Discussion 28 Using bimolecular fluorescence complementation (BiFC) analysis in conjunction with deletion mutagenesis identified functional motifs regulating B56γ3 nuclear localization 28 CK1δ phosphorylates B56γ3 at Ser440 to regulate nuclear localization of B56γ3 30 CK1δ phosphorylates B56γ3 at Ser440 regulating protein stability 32 The c-terminal sequence of B56γ3 may mask the potential importin α/β binding element, and phosphorylation of Ser440 of B56γ3 by CK1δ cause a conformational change to expose the binding element with importin α/β 33 References 35 Figures 40 Appendix 58 作者簡歷 64

    1. Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. The Biochemical journal 353, 417-439 (2001).
    2. Janssens, V., Goris, J. & Van Hoof, C. PP2A: the expected tumor suppressor. Current opinion in genetics & development 15, 34-41 (2005).
    3. Lee, T.Y. et al. The B56gamma3 regulatory subunit of protein phosphatase 2A (PP2A) regulates S phase-specific nuclear accumulation of PP2A and the G1 to S transition. The Journal of biological chemistry 285, 21567-21580 (2010).
    4. Hemmings, B.A. et al. alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29, 3166-3173 (1990).
    5. Walter, G., Ferre, F., Espiritu, O. & Carbone-Wiley, A. Molecular cloning and sequence of cDNA encoding polyoma medium tumor antigen-associated 61-kDa protein. Proceedings of the National Academy of Sciences of the United States of America 86, 8669-8672 (1989).
    6. Groves, M.R., Hanlon, N., Turowski, P., Hemmings, B.A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99-110 (1999).
    7. Xing, Y. et al. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127, 341-353 (2006).
    8. Ruediger, R. et al. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol 12, 4872-4882 (1992).
    9. Ruediger, R., Hentz, M., Fait, J., Mumby, M. & Walter, G. Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens. Journal of virology 68, 123-129 (1994).
    10. Stone, S.R., Hofsteenge, J. & Hemmings, B.A. Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry 26, 7215-7220 (1987).
    11. Khew-Goodall, Y. & Hemmings, B.A. Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS Lett 238, 265-268 (1988).
    12. Fellner, T. et al. A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo. Genes Dev 17, 2138-2150 (2003).
    13. Yang, S.I. et al. Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol Cell Biol 11, 1988-1995 (1991).
    14. Bode, A.M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature reviews. Cancer 4, 793-805 (2004).
    15. Gigena, M.S., Ito, A., Nojima, H. & Rogers, T.B. A B56 regulatory subunit of protein phosphatase 2A localizes to nuclear speckles in cardiomyocytes. American journal of physiology. Heart and circulatory physiology 289, H285-294 (2005).
    16. Flegg, C.P. et al. Nuclear export and centrosome targeting of the protein phosphatase 2A subunit B56alpha: role of B56alpha in nuclear export of the catalytic subunit. The Journal of biological chemistry 285, 18144-18154 (2010).
    17. Arnold, H.K. & Sears, R.C. Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and cellular biology 26, 2832-2844 (2006).
    18. Margolis, S.S. et al. Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127, 759-773 (2006).
    19. Longin, S. et al. Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic Subunit. The Journal of biological chemistry 282, 26971-26980 (2007).
    20. Tehrani, M.A., Mumby, M.C. & Kamibayashi, C. Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. The Journal of biological chemistry 271, 5164-5170 (1996).
    21. Muneer, S. et al. Genomic organization and mapping of the gene encoding the PP2A B56gamma regulatory subunit. Genomics 79, 344-348 (2002).
    22. McCright, B., Rivers, A.M., Audlin, S. & Virshup, D.M. The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. The Journal of biological chemistry 271, 22081-22089 (1996).
    23. Weis, K. Importins and exportins: how to get in and out of the nucleus. Trends in biochemical sciences 23, 185-189 (1998).
    24. Chen, Y.G. et al. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood) 231, 534-544 (2006).
    25. Eichhorn, P.J., Creyghton, M.P. & Bernards, R. Protein phosphatase 2A regulatory subunits and cancer. Biochimica et biophysica acta 1795, 1-15 (2009).
    26. Yang, Y.-S. & Chiang, C.-W. Study the Mechanism of Nuclear Localization of the B56γ3 Regulatory Subunit of PP2A (2010).
    27. Lin, C.-T. & Chiang, C.-W. Characterize the mechanisms of nucleocytoplasmic shuttling of the PP2A B56γ3 regulatory subunit (2009).
    28. Newman, M.F. et al. Cerebral physiologic effects of burst suppression doses of propofol during nonpulsatile cardiopulmonary bypass. CNS Subgroup of McSPI. Anesthesia and analgesia 81, 452-457 (1995).
    29. Gross, S.D. & Anderson, R.A. Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cellular signalling 10, 699-711 (1998).
    30. Dahlberg, C.L., Nguyen, E.Z., Goodlett, D. & Kimelman, D. Interactions between Casein kinase Iepsilon (CKIepsilon) and two substrates from disparate signaling pathways reveal mechanisms for substrate-kinase specificity. PloS one 4, e4766 (2009).
    31. Zyss, D., Ebrahimi, H. & Gergely, F. Casein kinase I delta controls centrosome positioning during T cell activation. The Journal of cell biology 195, 781-797 (2011).
    32. Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature biotechnology 21, 539-545 (2003).
    33. Patel, L.R., Curran, T. & Kerppola, T.K. Energy transfer analysis of Fos-Jun dimerization and DNA binding. Proceedings of the National Academy of Sciences of the United States of America 91, 7360-7364 (1994).
    34. Kerppola, T.K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nature protocols 1, 1278-1286 (2006).
    35. Mo, S.-T. & Chiang, C.-W. Study the subcellular localization of the PP2A holoenzymes (2010).
    36. Gorlich, D. & Mattaj, I.W. Nucleocytoplasmic transport. Science 271, 1513-1518 (1996).
    37. Ohno, M., Fornerod, M. & Mattaj, I.W. Nucleocytoplasmic transport: the last 200 nanometers. Cell 92, 327-336 (1998).
    38. Kalderon, D., Roberts, B.L., Richardson, W.D. & Smith, A.E. A short amino acid sequence able to specify nuclear location. Cell 39, 499-509 (1984).
    39. Cabantous, S., Terwilliger, T.C. & Waldo, G.S. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23, 102-107 (2005).
    40. Zhang, S., Ma, C. & Chalfie, M. Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119, 137-144 (2004).
    41. Flotow, H. & Roach, P.J. Synergistic phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase and casein kinase I. Implications for hormonal regulation of glycogen synthase. The Journal of biological chemistry 264, 9126-9128 (1989).
    42. Flotow, H. et al. Phosphate groups as substrate determinants for casein kinase I action. The Journal of biological chemistry 265, 14264-14269 (1990).
    43. Kafadar, K.A., Zhu, H., Snyder, M. & Cyert, M.S. Negative regulation of calcineurin signaling by Hrr25p, a yeast homolog of casein kinase I. Genes & development 17, 2698-2708 (2003).
    44. Zhu, J. et al. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93, 851-861 (1998).
    45. Short, K.M., Hopwood, B., Yi, Z. & Cox, T.C. MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders. BMC cell biology 3, 1 (2002).
    46. Decottignies, A., Owsianik, G. & Ghislain, M. Casein kinase I-dependent phosphorylation and stability of the yeast multidrug transporter Pdr5p. The Journal of biological chemistry 274, 37139-37146 (1999).
    47. Pouton, C.W., Wagstaff, K.M., Roth, D.M., Moseley, G.W. & Jans, D.A. Targeted delivery to the nucleus. Advanced drug delivery reviews 59, 698-717 (2007).

    無法下載圖示 校內:2021-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE