| 研究生: |
陳俊義 Chen, Jyun-Yi |
|---|---|
| 論文名稱: |
利用聚乙烯醇物理凝膠進行可控的生坯塑形製備具複雜結構的
3D 列印陶瓷成品 3D printing of ceramics with controllable green-body configuration assisted by the polyvinyl alcohol-based physical gels |
| 指導教授: |
游聲盛
Yu, Sheng-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 積層製造 、直接書寫式列印法 、奈米複合水凝膠 、氧化鋁 、氧化鋯 、複雜幾何結構 |
| 外文關鍵詞: | additive manufacturing, direct ink writing, nanocomposite hydrogel, zirconia, alumina, complex structure |
| 相關次數: | 點閱:42 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,陶瓷的積層製造技術引起了廣泛地關注。特別是在化學工程、航空航天和生物醫學工程等領域的應用中,可客製化的3D列印陶瓷元件是熱門的研究方向。然而,由於陶瓷材料硬度高、延展性差,開發一種簡單且成本低廉的工藝來製造形狀複雜的致密陶瓷仍然面臨著挑戰。
在眾多3D列印方法中,擠壓式的3D列印技術,以直接書寫式列印法寫入為例,通常需要使用支撐材料,這在列印設計及保持材料構型上列增加了額外的難度。因此,本實驗室開發了一種簡單的方法製備具可拉伸性的氧化鋯與氧化鋁生坯,達到客製化複雜形狀的需求。列印配方主要由聚乙烯醇和陶瓷粉末的懸浮液組成。除了由陶瓷顆粒形成的膠體網絡之外,聚乙烯醇在調節墨水的可打印性方面起著至關重要的作用。透過凍溶循環過程所誘發的聚乙烯醇結晶會形成第二層物理交聯網絡進而產生了高度可拉伸的水凝膠生胚。優異的拉伸性質搭配二次塑形可以將生坯進一步定形,達到傳統書寫式列印難以企及幾何結構。隨後的乾燥、脫脂和燒結過程能夠有效地燒製出機械性能良好的陶瓷成品。總體來說,本論文主要闡述一種高效的陶瓷3D列印製程,為製備形狀複雜的陶瓷元件提供一種全新的思路。
Additive manufacturing of ceramics has received intense attention in recent years. In particular, 3D-printed ceramics with customized shapes are highly desirable in the chemical industry, aerospace, and biomedical engineering. Nevertheless, developing a simple and cost-effective process that shapes dense ceramics to complex geometries remains challenging because of the high hardness and low ductility of ceramic materials. Extrusion-based printing, such as direct ink writing (DIW), often requires supporting materials that pose additional difficulties during printing. Herein, we have developed a simple approach to produce stretchable ceramic green bodies of zirconia and alumina for DIW. The ink composes of polyvinyl alcohol (PVA) and an aqueous suspension of ceramic powders. Besides the colloidal network formed by the ceramic particles, PVA plays an important role in tuning the printability of the aqueous ink. Through a freeze-thaw process, PVA crystallizes to form physical networks. This strategy provides highly stretchable hydrogel green bodies that can be reprogrammed to complex geometries difficult for common DIW printing. The subsequent drying, debinding, and sintering processes produce ceramics with dense structures and fine mechanical properties. In short, our work demonstrates an efficient method for the DIW of ceramic parts that can be reprogrammed to complex geometries.
1. Franks, G. V.; Tallon, C.; Studart, A. R.; Sesso, M. L.; Leo, S. Colloidal processing: enabling complex shaped ceramics with unique multiscale structures. Journal of the American Ceramic Society 2017, 100 (2), 458-490.
2. Liang, Y.; Dutta, S. P. Application trend in advanced ceramic technologies. Technovation 2001, 21 (1), 61-65.
3. Medvedovski, E. Wear-resistant engineering ceramics. Wear 2001, 249 (9), 821-828
4. An, L.; Liang, B.; Guo, Z.; Wang, J.; Li, C.; Huang, Y.; Hu, Y.; Li, Z.; Armstrong, J. N.; Zhou, C.; et al. Wearable aramid–ceramic aerogel composite for harsh environment. Advanced Engineering Materials 2021, 23 (3), 2001169
5. Wei, K.; He, R.; Cheng, X.; Zhang, R.; Pei, Y.; Fang, D. A lightweight, high compression strength ultra high temperature ceramic corrugated panel with potential for thermal protection system applications. Materials & Design 2015, 66, 552-556.
6. Kozhevnikov, V. L.; Leonidov, I. A.; Patrakeev, M. V. Ceramic membranes with mixed conductivity and their application. Russian Chemical Reviews 2013, 82 (8), 772.
7. Leo, S.; Tallon, C.; Stone, N.; Franks, G. V.; Green, D. J. Near-net-shaping methods for ceramic elements of (body) armor systems. Journal of the American Ceramic Society 2014, 97 (10), 3013-3033.
8. Lange, F. F. Powder processing science and technology for increased reliability. Journal of the American Ceramic Society 1989, 72 (1), 3-15.
9. Rahaman, M. N. Ceramic processing; CRC press, 2017.
10. Richerson, D. W.; Lee, W. E. Modern ceramic engineering: properties, processing, and use in design; CRC press, 2018.
11. Alford, N. M.; Birchall, J. D.; Kendall, K. High-strength ceramics through colloidal control to remove defects. Nature 1987, 330 (6143), 51-53.
12. Moreno, R. The role of slip additives in tape-casting technology. I: Solvents and dispersants. American Ceramic Society Bulletin 1992, 71 (10), 1521-1531.
13. Carolina TALLON, G. V. F. Recent trends in shape forming from colloidal processing: a review. Journal of the Ceramic Society of Japan 2011, 119 (3), 147-160.
14. Zhang, Y.; Cheng, Y. B. Use of HEMA in gelcasting of ceramics: a case study on fused silica. Journal of the American Ceramic Society 2006, 89 (9), 2933-2935.
15. Kokabi, M.; Babaluo, A. A.; Barati, A. Gelation process in low-toxic gelcasting systems. Journal of the European Ceramic Society 2006, 26 (15), 3083-3090.
16. Chabert, F.; Dunstan, D. E.; Franks, G. V. Cross‐linked polyvinyl alcohol as a binder for gelcasting and green machining. Journal of the American Ceramic Society 2008, 91 (10), 3138-3146.
17. Araki, K.; Halloran, J. W. Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. Journal of the American Ceramic Society 2005, 88 (5), 1108-1114.
18. Huang, T.; Mason, M. S.; Zhao, X.; Hilmas, G. E.; Leu, M. C. Aqueous‐based freeze‐form extrusion fabrication of alumina components. Rapid Prototyping J. 2009.
19. Mesquita, F.; Morelli, M. Plastic forming of Al2O3 ceramic substrates. Journal of materials processing technology 2003, 143, 232-236.
20. Alford, N. M.; Birchall, J.; Kendall, K. High-strength ceramics through colloidal control to remove defects. Nature 1987, 330 (6143), 51-53.
21. Zhang, D.; Sanmartin, D. R.; Button, T. W.; Meggs, C.; Atkins, C.; Doel, P.; Brooks, D.; Feldman, C.; Willingale, R.; Michette, A. The fabrication and characterisation of piezoelectric actuators for active x-ray optics. Advances in X-Ray/EUV Optics and Components IV, 2009; 7448, 58-66.
22. Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. Journal of the European Ceramic Society 2019, 39 (4), 661-687.
23. Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mulhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chemical Reviews 2017, 117 (15), 10212-10290.
24. Belhabib, S.; Guessasma, S. Compression performance of hollow structures: From topology optimisation to design 3D printing. International Journal of Mechanical Sciences 2017, 133, 728-739.
25. Lu, K.; Reynolds, W. T. 3DP process for fine mesh structure printing. Powder Technology 2008, 187 (1), 11-18.
26. Zhou, S.; Mei, H.; Chang, P.; Lu, M.; Cheng, L. Molecule editable 3D printed polymer-derived ceramics. Coordination Chemistry Reviews 2020, 422.
27. Griffith, M. L.; Halloran, J. W. Freeform fabrication of ceramics via stereolithography. Journal of the American Ceramic Society 1996, 79 (10), 2601-2608, Article.
28. Chen, Z.; Li, D.; Zhou, W.; Wang, L. Curing characteristics of ceramic stereolithography for an aqueous-based silica suspension. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2010, 224 (4), 641-651, Article.
29. de Hazan, Y.; Penner, D. SiC and SiOC ceramic articles produced by stereolithography of acrylate modified polycarbosilane systems. Journal of the European Ceramic Society 2017, 37 (16), 5205-5212.
30. Zak C. Eckel, C. Z., John H. Martin, Alan J. Jacobsen, William B. Carter and Tobias A. Schaedler. Additive manufacturing of polymer-derived ceramics. Science 2015, 351 (6268), 58-62.
31. Zanchetta, E.; Cattaldo, M.; Franchin, G.; Schwentenwein, M.; Homa, J.; Brusatin, G.; Colombo, P. Stereolithography of SiOC Ceramic Microcomponents. Advance Material 2016, 28 (2), 370-376.
32. Kim, G. B.; Lee, S.; Kim, H.; Yang, D. H.; Kim, Y. H.; Kyung, Y. S.; Kim, C. S.; Choi, S. H.; Kim, B. J.; Ha, H.; et al. Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology. Korean Journal of Radiology 2016, 17 (2), 182-197.
33. Gentry, S. P.; Halloran, J. W. Depth and width of cured lines in photopolymerizable ceramic suspensions. Journal of the European Ceramic Society 2013, 33 (10), 1981-1988.
34. Felzmann, R.; Gruber, S.; Mitteramskogler, G.; Tesavibul, P.; Boccaccini, A. R.; Liska, R.; Stampfl, J. Lithography-based additive manufacturing of cellular ceramic structures. Advanced Engineering Materials 2012, 14 (12), 1052-1058.
35. Hon, K. K. B.; Li, L.; Hutchings, I. M. Direct writing technology—advances and developments. CIRP Annals 2008, 57 (2), 601-620.
36. Kosmala, A.; Zhang, Q.; Wright, R.; Kirby, P. Development of high concentrated aqueous silver nanofluid and inkjet printing on ceramic substrates. Materials Chemistry and Physics 2012, 132 (2), 788-795.
37. Zhao, X.; Evans, J. R. G.; Edirisinghe, M. J.; Song, J. H. Formulation of a ceramic ink for a wide-array drop-on-demand ink-jet printer. Ceramics International 2003, 29 (8), 887-892.
38. Jana, P.; Santoliquido, O.; Ortona, A.; Colombo, P.; Sorarù, G. D. Polymer-derived SiCN cellular structures from replica of 3D printed lattices. Journal of the American Ceramic Society 2018, 101 (7), 2732-2738.
39. Gibson, I.; Shi, D. Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyping J. 1997, 3 (4), 129-136, Article.
40. Shahzad, K.; Deckers, J.; Kruth, J.-P.; Vleugels, J. Additive manufacturing of alumina parts by indirect selective laser sintering and post processing. Journal of Materials Processing Technology 2013, 213 (9), 1484-1494.
41. Gorjan, L.; Tonello, R.; Sebastian, T.; Colombo, P.; Clemens, F. Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina. Journal of the European Ceramic Society 2019, 39 (7), 2463-2471.
42. Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering 2017, 110, 442-458.
43. Peng, E.; Zhang, D.; Ding, J. Ceramic Robocasting: Recent Achievements, Potential, and Future Developments. Advance Material 2018, 30 (47), e1802404.
44. Hidber, P. C.; Graule, T. J.; Gauckler, L. J. Citric acid—a dispersant for aqueous alumina suspensions. Journal of the American Ceramic Society 1996, 79 (7), 1857-1867.
45. Hidber, P. C.; Graule, T. J.; Gauckler, L. J. Influence of the dispersant structure on properties of electrostatically stabilized aqueous alumina suspensions. Journal of the European Ceramic Society 1997, 17 (2-3), 239-249.
46. Napper, D.; Netschey, A. Studies of the steric stabilization of colloidal particles. Journal of Colloid and Interface Science 1971, 37 (3), 528-535.
47. Romero-Cano, M. S.; Martín-Rodríguez, A.; de las Nieves, F. J. Electrosteric stabilization of polymer colloids with different functionality. Langmuir 2001, 17 (11), 3505-3511.
48. Feilden, E.; Blanca, E. G.-T.; Giuliani, F.; Saiz, E.; Vandeperre, L. Robocasting of structural ceramic parts with hydrogel inks. Journal of the European Ceramic Society 2016, 36 (10), 2525-2533.
49. Zocca, A.; Colombo, P.; Gomes, C. M.; Günster, J. Additive manufacturing of ceramics: issues, potentialities, and opportunities. Journal of the American Ceramic Society 2015, 98 (7), 1983-2001.
50. Rueschhoff, L.; Costakis, W.; Michie, M.; Youngblood, J.; Trice, R. Additive manufacturing of dense ceramic parts via direct ink writing of aqueous alumina suspensions. International Journal of Applied Ceramic Technology 2016, 13 (5), 821-830.
51. Zhu, C.; Pascall, A. J.; Dudukovic, N.; Worsley, M. A.; Kuntz, J. D.; Duoss, E. B.; Spadaccini, C. M. Colloidal Materials for 3D Printing. Annual Review of Chemical Biomolecular Engineering 2019, 10, 17-42.
52. Wedin, P.; Martinez, C. J.; Lewis, J. A.; Daicic, J.; Bergström, L. Stress development during drying of calcium carbonate suspensions containing carboxymethylcellulose and latex particles. Journal of Colloid and Interface Science 2004, 272 (1), 1-9.
53. Kiennemann, J.; Chartier, T.; Pagnoux, C.; Baumard, J.; Huger, M.; Lamerant, J. Drying mechanisms and stress development in aqueous alumina tape casting. Journal of the European Ceramic Society 2005, 25 (9), 1551-1564.
54. Brown, L.; Zukoski, C.; White, L. Consolidation during drying of aggregated suspensions. AIChE journal 2002, 48 (3), 492-502.
55. Rhodes, M. Fluid flow through a packed bed of particles. Introduction to particle technology 2008, 153-168.
56. Zhang, D. W.; Peng, E.; Borayek, R.; Ding, J. Controllable ceramic green-body configuration for complex ceramic architectures with fine features. Advanced Functional Materials 2019, 29 (12), 12, Article.
57. Roman-Manso, B.; Weeks, R. D.; Truby, R. L.; Lewis, J. A. Embedded 3D printing of architected ceramics via microwave-activated polymerization. Advance Material 2023, 35 (15), 2209270.
58. Meka, V. S.; Sing, M. K.; Pichika, M. R.; Nali, S. R.; Kolapalli, V. R.; Kesharwani, P. A comprehensive review on polyelectrolyte complexes. Drug Discovery Today 2017, 22 (11), 1697-1706.
59. Baker, M. I.; Walsh, S. P.; Schwartz, Z.; Boyan, B. D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2012, 100 (5), 1451-1457.
60. Baker, M. I.; Walsh, S. P.; Schwartz, Z.; Boyan, B. D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Journal of Applied Biomaterials 2012, 100 (5), 1451-1457.
61. Zhou, Y.; Wan, C.; Yang, Y.; Yang, H.; Wang, S.; Dai, Z.; Ji, K.; Jiang, H.; Chen, X.; Long, Y. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Advanced Functional Materials 2019, 29 (1), 1806220.
62. Mehrotra, T.; Zaman, M. N.; Prasad, B. B.; Shukla, A.; Aggarwal, S.; Singh, R. Rapid immobilization of viable Bacillus pseudomycoides in polyvinyl alcohol/glutaraldehyde hydrogel for biological treatment of municipal wastewater. Environmental Science and Pollution Research 2020, 27 (9), 9167-9180.
63. Adelnia, H.; Ensandoost, R.; Shebbrin Moonshi, S.; Gavgani, J. N.; Vasafi, E. I.; Ta, H. T. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. European Polymer Journal 2022, 164.
64. Yokoyama, F.; Masada, I.; Shimamura, K.; Ikawa, T.; Monobe, K. Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid & Polymer Science 1986, 264 (7), 595-601, Article.
65. Holloway, J. L.; Lowman, A. M.; Palmese, G. R. The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter 2013, 9 (3), 826-833.
66. Acosta, M.; Wiesner, V. L.; Martinez, C. J.; Trice, R. W.; Youngblood, J. P. Effect of polyvinylpyrrolidone additions on the rheology of aqueous, highly loaded alumina suspensions. Journal of the American Ceramic Society 2013, 96 (5), 1372-1382.
67. Lewis, J. A. Colloidal processing of ceramics. Journal of the American Ceramic Society 2000, 83 (10), 2341-2359.
68. Snowden, M. J.; Clegg, S. M.; Williams, P. A.; Robb, I. D. Flocculation of silica particles by adsorbing and non-adsorbing polymers. Journal of the Chemical Society, Faraday Transactions 1991, 87 (14), 2201-2207.
69. del-Mazo-Barbara, L.; Ginebra, M.-P. Rheological characterisation of ceramic inks for 3D direct ink writing: a review. Journal of the European Ceramic Society 2021, 41 (16), 18-33.
70. Shi, R.; Bi, J.; Zhang, Z.; Zhu, A.; Chen, D.; Zhou, X.; Zhang, L.; Tian, W. The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydrate Polymers 2008, 74 (4), 763-770.
71. Gao, G.; Du, G.; Sun, Y.; Fu, J. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Applied. Materials & Interfaces 2015, 7 (8), 5029-5037.
72. Zhang, X.; Huo, W.; Yan, S.; Chen, Y.; Gan, K.; Liu, J.; Yang, J. Innovative application of PVA hydrogel for the forming of porous Si3N4 ceramics via freeze-thaw technique. Ceramics International 2018, 44 (11), 13409-13413.
73. Ricciardi, R.; Auriemma, F.; De Rosa, C.; Lauprêtre, F. X-ray diffraction analysis of poly (vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 2004, 37 (5), 1921-1927.
74. Sun, J.; Chen, X.; Wade-Zhu, J.; Binner, J.; Bai, J. A comprehensive study of dense zirconia components fabricated by additive manufacturing. Additive Manufacturing 2021, 43, 101994.
75. Peng, E.; Wei, X.; Garbe, U.; Yu, D.; Edouard, B.; Liu, A.; Ding, J. Robocasting of dense yttria-stabilized zirconia structures. Journal of Materials Science 2017, 53 (1), 247-273.
76. Elizarova, I. S.; Vandeperre, L.; Saiz, E. Conformable green bodies: Plastic forming of robocasted advanced ceramics. Journal of the European Ceramic Society 2020, 40 (2), 552-557.
77. Schwentenwein, M.; Homa, J. Additive manufacturing of dense alumina ceramics. International Journal of Applied Ceramic Technology 2015, 12 (1), 1-7.