| 研究生: |
林宇君 Lin, Yu-Chun |
|---|---|
| 論文名稱: |
新型低能隙聚芴系共聚物之合成及其在太陽能電池之應用 Synthesis and characterization of new low bandgap polyfluorene copolymers for bulk heterojuction solar cells |
| 指導教授: |
許聯崇
Hsu, Lien-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 共聚高分子 、高分子太陽能電池 |
| 外文關鍵詞: | copolymer, polymer solar cell |
| 相關次數: | 點閱:56 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用Suzuki聚合方法,以fluorene單體為主體合成出具有電子予體-電子受體結構的新式低能隙聚芴系共聚高分子,並將其運用於有機太陽能電池中的單層異質接面結構之元件上。實驗所合成的兩種單體皆具有電子予體-電子受體-電子予體的結構,單體M2更引入了甲基基團,能增加推電子能力,與9,9-dioctylfluorene-2,7- diboronic acid bis(1,3-propanediol) ester聚合後可得交替式共聚高分子(alternative copolymer)P1與P2。高分子P1與P2都具有優良的熱穩定性,其5%熱重損失(T5d)分別為419與438 °C,皆比純polyfluorene要高。在紫外光-可見光的吸收光譜可看出在可見光範圍高分子P1與P2的最大吸收峰在526、527nm,而起始吸收波長則在621及625nm,其光學能隙分別為1.99與1.98eV。在元件結構為indium tin oxide (ITO) / poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT : PSS) / active layer / LiF / Al時,將P1、P2高分子混合6,6-Phenyl C61-butyric acid methyl ester (PCBM)以1:4比例作為主動層,塗佈完後熱處理200℃可得最佳的元件光電轉換效率分別為0.563%與0.608%。
Two new low bandgap alternating polyfluorene copolymers (P1 and P2) based on dioctylfluorene and donor-acceptor-donor monomers have been synthesized via a Suzuki polymerization reaction. The 5% weight loss temperatures (T5d) of the P1 and P2 are 419 and 438 °C, respectively. These data indicate that the copolymers have good thermal stability. These two copolymers have similar UV/vis absorption spectra. The absorption peak maxima of copolymers 1 and 2 are at 526 nm and 527 nm, and the onset absorptions are at 621 nm and 625 nm, respectively. The copolymers have low optical bandgaps at 1.99~1.98 eV. The bulk heterojuction polymer solar cells were fabricated with the conjugated polymers as the electron donor and 6,6-Phenyl C61-butyric acid methyl ester (PCBM) as the electron acceptor. The power conversion efficiencies (PCE) of the solar cells based on copolymers 1 and 2 are 0.563% and 0.608%, respectively, under the illumination of AM 1.5, 100 mW/cm2.
[1] M. Grätzel, Nature, 2000, 403, 363.
[2] M. Grätzel, Nature, 2001, 414, 338.
[3] M. Grätzel, MRS Bulletin, 2005, 30, 23.
[4] S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chemical Reviews,
2007, 107, 1324.
[5] http://140.109.91.205/cht/research/DSSC.htm
[6] S. E. Shaheen, D. S. Ginley, and G. E. Jabbour, MRS Bulletin, 2005, 30, 10.
[7] Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, Jpn. J. Appl. Phys. ,1991, 30, L1941.
[8] A. Gadisa, F. Zhang, D. Sharma, M. Svensson, M. R. Andersson, and O. Inganas, Thin Solid Films, 2007, 515, 3126.
[9] The Newport Resource, 2008/2009, Solar Simulators, Light Sources, 163.
[10] http://www.newport.com/Introduction-to-Solar-Radiation/411919/
1033/catalog.aspx
[11] 蔡進譯,物理雙月刊(廿七卷五期),2005年,頁701。
[12] A. Monkman, Phys. Rev .Lett., 2001, 6, 1358.
[13] A. J. Heeger, Comments Solid State Physics, 1981, 10, 53.
[14] K. Sakayori, Y. Shibasaki, and M. J. Ueda, Polym. Sci. Part A, 2005,
43, 5571.
[15] K. Nakaya, K. Funabiki, H. Muramatsu, K. Shibata, and M. Matsui, Dyes and Pigments, 1999, 43, 235.
[16] 陳方中,化合物半導體光電技術-前瞻技術-高分子薄膜太陽能電池,2008年。
[17] B. A. Gregg, MRS Bulletin, 2005, 30, 20.
[18] A. K. Ghosh, and T. Feng, J. Appl, Phys, 1978, 49, 5982.
[19] 陳建華,國立成功大學化學工程研究所,碩士論文,2003年。
[20] C. W. Tang, Appl. Phys. Lett., 1986, 48, 183.
[21] H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, and R. E. Smalley, Nature, 1985, 318, 162.
[22] J. J. M. Halls, K. Pichler, R. H. Friend and S. C. Moratti, and A. B. Holmes, Appl. Phys. Lett., 1996, 68, 3120.
[23] G. Yu, K. Pakbaz, and A. J. Heeger, Appl. Phys. Lett., 1994, 64, 3422.
[24] J. C. Hummelen, B.W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, J. Org. Chem., 1995, 60, 532.
[25] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 1995, 270, 1789.
[26] R. A. J. Janssen, J. C. Hummelen, and N. S. Saricftci, MRS Bulletin, 2005, 30, 33.
[27] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett., 2001, 78, 841.
[28] M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. Hal, and R. A. J. Janssen, Angew. Chem. Int. Ed., 2003, 42, 3371.
[29] P. Schilinsky, C. Waldauf, and C. J. Brabec, Appl. Phys. Lett., 2002, 81, 3885.
[30] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater., 2006, 18, 572.
[31] J. M. Nunzi, C. R. Physique, 2002, 3, 523.
[32] G. Brocks, and A. Tol, J. Phys. Chem., 1996, 100, 1838.
[33] G. Brocks, and A. Tol, Synth. Met., 1996, 76, 213.
[34] T. Yamamoto, Bull. Chem. Soc. Jpn., 1999, 72, 621.
[35] T. Yamamoto, Z. H. Zhou, T. Kanbara, M. Shimura, K. Kizu, T. Maruyama, Y. Nakamura, T. Fukuda, B. L. Lee, N. Ooba, S. Tomaru, T. Kurihara, T. Kaino, K. Kubota, and S. Sasaki, J. Am. Chem. Soc., 1996, 118, 10389.
[36] B. L. Lee, and T. Yamamoto, Macromolecules, 1999, 32, 1375.
[37] D. A. P. Delnoye, R. P. Sijbesma, J. A. J. M. Vekemans, and E. W. Meijer, J. Am. Chem. Soc.,1996, 118, 8717.
[38] R. Naef, and H. Balli, Helv. Chim. Acta, 1978, 61, 2958.
[39] H. A. M. Mullekom, J. A. J. M. Vekemans, E. E. Havinga, and E. W. Meijer, Mat. Sci. Eng. : R, 2001, 32, 1.
[40] H. A. M. Mullekom, J. A. J. M. Vekemans, and E. W. Meijer, Chem. Commun., 1996, 18, 2163.
[41] N. Miyaura, and A. Suzuki, Chem. Commun., 1979, 19, 866.
[42] A. Suzuki, Pure Appl. Chem. 1991, 63, 419.
[43] N. Miyaura, and A. Suzuki, Chem. Rev., 1995, 95, 2457.
[44] A. Suzuki, J. Organometallic Chem., 1999, 576, 147.
[45] K. Matos, and J. A. Soderquist, J. Org. Chem., 1998, 63, 461.
[46] J. F. Rusling, and S. L. Suib, Adv. Mater., 1994, 6, 922.
[47] Y. Liu, M. S. Liu, and A. K. Y. Jen, Acta. Polym., 1999, 50, 105.
[48] 羅喜興,國立臺灣大學材料科學與工程學系,碩士論文,2007年。
[49] 林松榆,國立成功大學材料工程學系,碩士論文,2005年。
[50] B. A. Gregg, MRS Bulletin, 2005, 30, 20.
[51] E. Moore, B. Gherman, and D. Yaron, J. Chem. Phys., 1997, 106, 4216.
[52] D. Moses, J. Wang, A. J. Heeger, N. Kirova, and S. Brazovski, Syn. Met., 2002, 125, 93.
[53] J. L. Brédas, J. Cornil, and A. J. Heeger, Adv. Mater., 1996, 8, 447.
[54] A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, Adv. Funct. Mater., 2007, 17, 3836.
[55] T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, and F. Cacialli, J. Appl. Phys., 2003, 93, 6159.
[56] S. K. M. Jönsson, E. Carlegrim, F. Zhang, W. R. Salaneck, and M. Fahlman, Jpn. J. Appl. Phys., 2005, 44, 3695.
[57] D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew, and D. S. Ginger, Nano Lett., 2007, 7, 738.
[58] W. H. Baek, H. Yang, T. S. Yoon, C. J. Kang, H. H. Lee, and Y. S. Kim, Solar Energy Materials and Solar Cells, 2009, 93, 1263.