簡易檢索 / 詳目顯示

研究生: 洪士庭
Hong, Shi-Ting
論文名稱: 基於擴展華氏碼及梯度搜尋偵測方法的碼域非正交多址方案
A Code-Domain NOMA Scheme Based on Extended Walsh Codes and Gradient Search Detection Method
指導教授: 張名先
Chang, Ming-Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 85
中文關鍵詞: 非正交分碼多址分碼多址擴展華氏碼梯度搜尋演算法差分度量
外文關鍵詞: NOMA, CDMA, Extended Walsh Codes, GSA, DM
相關次數: 點閱:63下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第五代移動通信技術(5G)是目前無線通信領域的重大里程碑,為了支援萬物聯網、智能城市等等的願景,對於在有限資源下如何將使用者數增加的研究也就順勢而生,因此就有了非正交多址(Non-Orthogonal Multiple Access, NOMA)的出現。NOMA與傳統的正交多址(Orthogonal Multiple Access, OMA) 最大的差別是在於NOMA是使用非正交的方式將資源分配,在同一時間和頻率資源上去支援更多的使用者,作為代價,在接收端必須使用更複雜的計算來處理多用戶的訊號。

    和目前主流在Power-Domain進行NOMA的方案不同,在本篇論文中是以Code-Domain 來做NOMA方案的設計,使用Walsh code的 DS-CDMA(Direct-Sequence Code Division Multiple Access)與OFDM-CDMA(Orthogonal frequency-division multiplexing CDMA)為基礎,場景分別設定為上行(uplink)與下行(downlink),透過與 Walsh code性質相似的碼,和Walsh code組合成新的展頻碼(在此稱為擴展華氏碼, Extended Walsh Codes),進行Code-Domain 的NOMA方案討論,並且在接收端使用改良後的梯度搜尋的方法,來達成多用戶偵測。

    本文的內容主要包含四個部分。第一部分是介紹傳統的DS-CDMA及OFDM-CDMA的原理以及在瑞利衰落通道下的零強制(Zero-Forcing, ZF)和最小均方誤差(Minimum Mean-Square Error Equalization, MMSE)的等化方法。第二部分是針對Code-Domain NOMA方案的展頻碼的設計與系統的公式推導及討論。第三部分是討論梯度搜尋演算法,梯度搜尋演算法是以差分度量為基礎,最初是為了改善多輸入多輸出(Multiple-Input Multiple-Output, MIMO)系統的偵測,使其接近最大概似(Maximum Likelihood, ML)偵測的結果,同時也可以在錯誤率性能與計算複雜度之間達成平衡,在本文中將其應用於此NOMA方案中。最後一部分則是系統模擬,對本文所提到的系統進行模擬及分析討論。

    Non-orthogonal Multiple Access(NOMA) is one of the candidate technologies for 6G, including power-domain NOMA, code-domain Low Density Signature(LDS) NOMA, etc. This thesis belongs to the code domain non-LDS NOMA. In this thesis, we propose two NOMA schemes, Direct-sequence NOMA(DS-NOMA) and Multi-carrier NOMA(MC-NOMA), based on traditional DS-CDMA and OFDM-CDMA. Therefore, the scenario of power allocation is not considered. Three extended Walsh codes are used for spreading code in the system, composed of Walsh codes and new spreading codes similar to Walsh codes (mutually orthogonal but not orthogonal to Walsh codes), thus retaining some orthogonal properties.

    In the receiver, as power allocation is not considered, we reference the Gradient Search Algorithm (GSA) to detect and improve its search method. Gradient search was originally developed as one of the methods to approach Maximum Likelihood (ML) detection in Multiple-Input Multiple-Output(MIMO) systems. However, its impractical computational complexity hindered its implementation in practice. Therefore, a simplification was pursued to strike a balance between computational complexity and performance, referred to as GSA. As the signal model of MIMO systems bears some resemblance to the NOMA proposed here, we aim to apply GSA to the receiver and further enhance it to improve bit error rate(BER) while maintaining computational efficiency.

    Finally, we conduct simulations using Monte Carlo methods, assuming known channel State Information(CSI) and synchronized. With an additional 25% increase in users, the bit error rate(BER) of DS-NOMA can approach the orthogonal scenarios, while MC-NOMA can achieve BER results similar to those in orthogonal scenarios. Moreover, the improved search method, with minimal increase in computational complexity compared to previous methods, effectively reduces the BER at the receiver.

    摘要i 英文延伸摘要ii 誌謝vii Table of Contents viii List of Figures x Chapter 1. 緒論1 1.1. 動機1 1.2. 論文架構2 Chapter 2. 分碼多工存取3 2.1. 華氏碼4 2.2. 直序分碼多工存取(DS-CDMA)技術介紹4 2.3. 多載波分碼多工存取(MC-CDMA)技術介紹6 2.3.1. 正交分頻多工(OFDM)簡介6 2.3.2. 系統架構8 2.4. 等化方法10 2.4.1. 零強制(ZF) 10 2.4.2. 最小均方誤差(MMSE)11 2.5. 模擬結果13 Chapter 3. 非正交多工存取16 3.1. 擴展華氏碼 (Extended Walsh Codes)17 3.2. 直序非正交分碼多工存取(DS-NOMA)及多載波非正交分碼多工存取(MC-NOMA)18 3.2.1. 直序非正交分碼多工存取(DS-NOMA)18 3.2.2. 多載波非正交分碼多工存取 (MC-NOMA)20 3.3. 模擬結果22 Chapter 4. 梯度搜尋24 4.1. 實數訊號模型24 4.2. 差分度量25 4.2.1. 差分度量的階數與遞迴關係27 4.2.2. 使用梯度搜尋進行ML偵測28 4.2.3. 計算複雜度29 4.3. 梯度搜尋演算法與模擬結果33 4.3.1. 標準搜尋 (Standard Search)33 4.3.2. 交換搜尋 (Changing Search)36 4.3.3. 跳躍搜尋 (Jump Search)45 Chapter 5. 不同擴展華氏碼的設計對於NOMA系統之影響60 5.1. 發想60 5.2. 模擬結果61 5.2.1. 三種擴展華氏碼在DS-NOMA的模擬圖61 5.2.2. 三種擴展華氏碼在MC-NOMA的模擬圖65 Chapter 6. 結論與未來展望69 6.0.1. 結論69 6.0.2. 未來展望70 References 71

    [1] A. F. M. Shahen Shah, “A Survey From 1G to 5G Including the Advent of 6G: Architectures, Multiple Access Techniques, and Emerging Technologies,” in 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), 2022, pp. 1117–1123.
    [2] Y. Tao, L. Liu, S. Liu, and Z. Zhang, “A survey: Several technologies of non-orthogonal transmission for 5G,” China Communications, vol. 12, no. 10, pp. 1–15, 2015.
    [3] Y. Shan, C. Peng, L. Lin, J. Zhu, and X. She, “Uplink Multiple Access Schemes for 5G: A Survey,” ZTE communications, vol. 15, pp. 31–40, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:226087825
    [4] A. Li, Y. Lan, X. Chen, and H. Jiang, “Non-orthogonal multiple access (NOMA) for future downlink radio access of 5G,” China Communications, vol. 12, no. Supplement, pp. 28–37, 2015.
    [5] Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, and J. Xu, “Multi-User Shared Access for Internet of Things,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1–5.
    [6] E. M. Eid, M. M. Fouda, A. S. Tag Eldien, and M. M. Tantawy, “Performance analysis of MUSA with different spreading codes using ordered SIC methods,” in 2017 12th International Conference on Computer Engineering and Systems (ICCES), 2017, pp. 101–106.
    [7] 蔣政儒 and 張文鐘, “Comparison of the Performance of MC-CDMA and MC-DS-CDMA under Multipath Fading Channel,” Master’s thesis, National Yang Ming Chiao Tung University, 2004. [Online]. Available: https://ir.lib.nycu.edu.tw/handle/11536/ 47090
    [8] 汪新堯 and 張名先, “OFDM-CDMA with Uniform Time-Frequency Spreading,” Master’s thesis, National Cheng Kung University, 2006. [Online]. Available: https://thesis.lib.ncku.edu.tw/thesis/detail/a656972634bf1df3165cd4d55fb0aa3b/
    [9] 彭達煒 and 張名先, “MMSE Detection for MC-CDMA and SC-FDE-CDMA System,” Master’s thesis, National Cheng Kung University, 2009. [Online]. Available: https://thesis.lib.ncku.edu.tw/thesis/detail/f897e3986e2b1800d1df2bd47e2fc3be/
    [10] W.-Y. Chang and M.-X. Chang, “Efficient Soft MIMO Detection Algorithms Based on Differential Metrics,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 2017, pp. 1–5.
    [11] M.-X. Chang and W.-Y. Chang, “Maximum-likelihood detection for MIMO systems based on differential metrics,” IEEE Transactions on Signal Processing, vol. 65, no. 14, pp. 3718–3732, 2017. 71
    [12] 李柏均 and 張名先, “Improved Detection Method for Single-Carrier Block Transmission Systems with Frequency-Domain Equalization Based on Gradient Search,” Master’s thesis, National Cheng Kung University, 2023. [Online]. Available: https://thesis.lib.ncku.edu.tw/thesis/detail/fc237ce265087444e32f31133d21a6e7/
    [13] M.-X. Chang, “Characterization of single-carrier block transmission under the precoded OFDM architecture,” in IEEE 5th International Symposium on Wireless Pervasive Computing 2010, May 2010, pp. 381–385.
    [14] D. Sinanović, G. Šišul, and B. Modlic, “Comparison of BER characteristics of OFDM and SC-FDMA in frequency selective channels,” in 2011 18th International Conference on Systems, Signals and Image Processing, 2011, pp. 1–4.
    [15] N. S. S. Srinivas, “OFDM system implementation, channel estimation and performance comparison of OFDM signal,” in 2015 13th International Conference on Electromagnetic Interference and Compatibility (INCEMIC), 2015, pp. 212–219.
    [16] T. Wu and R. Grammenos, “Reduced Complexity Maximum Likelihood Detector for DFT-s-SEFDM Systems,” in 2019 27th European Signal Processing Conference (EUSIPCO), 2019, pp. 1–5.
    [17] J. Liu, X. Hou, W. Liu, L. Chen, Y. Kishiyama, and T. Asai, “Unified Non-Orthogonal Waveform (uNOW) based on DFT-s-OFDM Enhancement for 5G Evolution and 6G,” in 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022, pp. 217–222.
    [18] M.-C. Lin, S.-K. Lee, H.-H. Fan, and Y.-H. Chen, “GDMA, LDS-CDMA, and HDS-CDMA for Uplink Communication Systems,” in 2023 VTS Asia Pacific Wireless Communications Symposium (APWCS), 2023, pp. 1–5.
    [19] 李柏豫 and 張名先, “Combining Gradient Search with Interference Cancellation for MIMO Non-Orthogonal Multiple Access,” Master’s thesis, National Cheng Kung University, 2023. [Online]. Available: https://thesis.lib.ncku.edu.tw/thesis/ detail/6f6f35ba630fa18640a32fa9cdf4f299/
    [20] Y. Tan, S. Li, B. Su, and Z. Xia, “MUSA System Based on Extended Sequences Optimization and User Rate Power Allocation,” in 2023 9th International Conference on Control Science and Systems Engineering (ICCSSE), 2023, pp. 375–379.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE