| 研究生: |
梁志豪 Liang, Chih-Hao |
|---|---|
| 論文名稱: |
Ba1-xSrxM2ZnO5 (M:Y, La) (x=0~1)系之光致發光特性之研究 Synthesis and photo-luminescent properties of Ba1-xSrxM2ZnO5 (M:Y, La) (x=0~1) based phosphors |
| 指導教授: |
張炎輝
Chang, Yen-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 三源色螢光粉 、光致發光 、BaLa2ZnO5與BaY2ZnO5結構 |
| 外文關鍵詞: | BaLa2ZnO5 and BaY2ZnO5 structure, R.G. B. phosphor, photo-luminescent properties |
| 相關次數: | 點閱:100 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的為開發新型氧化物螢光材料,主體採用Ba1-xSrxLa2ZnO5與BaY2ZnO5為基礎,分別添加稀土金屬離子Eu3+、Dy3+、Tb3+與Bi3+當作發光中心,觀察其螢光發光特性,依發光顏色分為:(1)紅光:BaY2-xEuxZnO5、BaLa2-xEuxZnO5 、Ba1-xSrxLa1.5Eu0.5ZnO5 ,(2)近白光:BaY2-xDyxZnO5、BaLa2-xDyxZnO5 、Ba1-xSrxLa1.93Dy0.07ZnO5,(3)綠光:BaY2-xTbxZnO5 ,及(4)藍光:BaLa2-xBixZnO5 。
BaY2-xEuxZnO5螢光粉於低添加濃度時以5D3→7FJ、5D2 →7FJ之躍遷為主;隨著Eu3+離子添加濃度提高後,高能階5D3→7FJ、5D2 →7FJ的躍遷逐漸減弱,當Eu3+離子添加濃度大於x = 0.3時其放射光則落於紅光範圍,而最大發光強度出現在BaY1.6Eu0.4ZnO5,CIE色度座標位在(0.662 ,0.338)。
BaLa2-xEuxZnO5系列的最高發光強度為x=0.5,BaLa1.5Eu0.5ZnO5之反對稱指數(5D07F2/5D07F1)為0.814,相較於BaY1.6Eu0.4ZnO5之反對稱指數(5D07F2/5D07F1)約為3.02,此現象起因於BaLa2ZnO5中La3+位置(C2v)對稱性較BaY2ZnO5中的Y3+位置(Cs)還要好。
Ba1-xSrxLa1.5Eu0.5ZnO5螢光粉,XRD結果顯示隨著Sr2+添加量增加(x= 0~x= 0.7)晶格常數變小,在波長395 nm之光激發下所得到的放射光譜之反對稱指數(5D07F2/5D07F1) 隨Sr2+添加量增加而變高,此結果顯示隨Sr2+添加量增加Eu3+的對稱性變差。
Dy3+參雜螢光粉中,BaLa2ZnO5中La3+位置的點群為C2v對稱性較BaY2ZnO5中的Y3+位置(Cs)還要好,所以BaY2ZnO5: Dy3+之(4F9/2→6H13/2)/(4F9/2→6H15/2)放射強度較高。Ba1-xSrx La1.93Dy0.07ZnO5 (x=0.1~0.7)之晶格常數及單位晶包體積,隨著Sr2+添加量增加而減小,Dy3+離子周圍的對稱性變差, 4F9/2→6H13/2躍遷為超敏感躍遷,故隨著對稱性變差4F9/2→6H13/2躍遷放光的機率提高。
BaY2-xTbxZnO5螢光粉體激發光譜在250~350nm之間出現寬廣的吸收帶為Tb3+離子由4f8 → 4f75d的電子躍遷吸收,此外在350~400 nm之間的尖銳吸收峰為4f-4f內層電子相互躍遷造成的激發譜線,BaY2-xTbxZnO5在305nm光源激發下之放射光譜為綠光,色度座標位在X=0.25,Y=0.606綠光的位置。衰減曲線呈現雙重指數遞減(double-exponential)代表兩個不同的機制能量傳遞分別為:(1)主體晶格傳能量給Tb3+ 離子作為發光之用;(2) Tb3+ 離子4f8 → 4f75d躍遷傳遞能給Tb3+離子。
藍光螢光粉BaLa2-xBixZnO5以1S0→ 3P1 (~320 nm)的躍遷當激發光源,偵測BaLa2-xBixZnO5的放射光譜發,其發光位置位在410 nm為3P1→ 1S0躍遷的放光,根據發光光譜計算BaLa2-xBixZnO5 螢光粉色度座標位在(0.160, 0.021)藍光的波段。BaLa2-xBixZnO5的衰減曲線,衰減曲線顯示各個添加濃度皆呈現雙重指數遞減(double exponential decay) ,本研究的衰減時間為11~25 (ms)比文獻上報導的還要長,推測為活化中心Bi3+與主體晶格的交互作用導致此種衰減行為。
The purpose of this study is to search novel oxide-based phosphors. Ba1-xSrxLa2ZnO5 and BaY2ZnO5 was doped with Eu3+、 Dy3+、Tb3+ and Bi3+ as activators. All phosphors divided into four parts including (1) red-emitting phosphor:BaY2-xEuxZnO5、BaLa2-xEuxZnO5 、Ba1-xSrxLa1.5Eu0.5ZnO5 , (2) close to white-emitting phosphor:BaY2-xDyxZnO5、BaLa2-xDyxZnO5 、Ba1-xSrxLa1.93Dy0.07ZnO5,(3) green-emitting phosphor:BaY2-xTbxZnO5 ,(4) blue-emitting phosphor:BaLa2-xBixZnO5.
The dominant transitions of BaY2-xEuxZnO5 phosphor are 5D3→7FJ(blue emission)、5D2 →7FJ(blue emission) at lower Eu3+ concentration. The intensity of the emission from 5D3 and 5D2 decrease with increasing Eu3+ concentration .This phenomenon is due to the nonradiative cross-relaxation process between Eu3+ ions. The BaY2-xEuxZnO5 phosphor emit bright red luminescence when Eu3+ concentration larger then x=0.3. The optimal PL intensity of red emission is x = 0.4 . The red emission of the BaY1.6Eu0.4ZnO5 phosphor has CIE chromaticity coordinates of (0.662, 0.338).
In the BaLa2-xEuxZnO5 series, the maximum PL intensity was obtained for Eu3+ concentration at x = 0.5. The asymmetry ratio (5D0 7F2/5D0 7F1) of BaLa1.5Eu0.5ZnO5 is 0.814 as compared with that the asymmetry ratio of BaY1.6Eu0.4ZnO5,3.02. This results due to La3+ site (C2v) in BaLa1.5Eu0.5ZnO5 has more symmetry than Y3+ site (Cs) in BaY1.6Eu0.4ZnO5.
In the Ba1-xSrxLa1.5Eu0.5ZnO5 series,the lattice constants of Ba1-xSrxLa1.5Eu0.5ZnO5
decrease with the increasing Sr2+ concentration (x= 0~x= 0.7). The asymmetry ratio of Ba1-xSrxLa1.5Eu0.5ZnO5 increases with Sr2+ doping. Both XRD and emission spectra reveal that the site symmetry of Eu3+ ions decreases with increasing Sr2+ doping.
In the Dy3+ ions doped phosphor,the site symmetry of La3+(C2v) in BaLa2ZnO5 structure is more symmetry than Y3+ site (Cs) in BaY2ZnO5 structure. So the higher emission ratio of (4F9/2 → 6H13/2)/(4F9/2 → 6H15/2) in BaY2ZnO5: Dy3+ phosphor observed. The lattice constants and cell volume of Ba1-xSrx La1.93Dy0.07ZnO5 (x=0.1~0.7) decrease with increasing Sr2+. The 4F9/2 → 6H13/2 transition is hypersensitive transition strongly influenced by the outside environment of Dy3+.As the Dy3+ site becomes more asymmetric, the 4F9/2 → 6H13/2 transition probability is more increasingly.
The excitation spectra (monitoring by 543 nm) show the broaden excitation peak between 250~350nm in the UV light region. This broaden excitation originate from 4f8 → 4f75d transitions of the activator Tb3+.The series of sharp excitation peaks between 350 and 400 nm correspond to the Tb3+ intra-4f (4f 8-4f8) transitions.
The BaY2-xTbxZnO5 shows green emission which located on CIE chromaticity coordinates (0.25, 0.606) under UV light (305 nm) excitation. Time-resolved investigation reveals that the decay curves are double exponential decay, which implied that the efficient energy transfer occurred between Tb3+ ions and host.
Blue-emitting phosphor BaLa2-xBixZnO5:the emission spectra of BaLa2-xBixZnO5 shows broaden emission band at 410 nm (3P1→ 1S0 ) under 1S0→ 3P1 (~320 nm) excitation. According to emission spectra, BaLa2-xBixZnO5 has CIE chromaticity coordinates of (0.160, 0.021).The decay curve analysis revels that double exponential decay occures in BaLa2-xBixZnO5 phosphor. The decay time of BaLa2-xBixZnO5 phosphor is determined to be 11~25 (mses) ,which is very different order of magnitude as reported in references(μses). This result implies that the efficient interaction occurred between Tb3+ ions and host.
[1 ] 劉如熹、林益山、康佳正,“白光發光二極體使用螢光粉專利解析”,全華科技,台灣 (2005)。
[2 ] 劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,(2003)。
[3 ] Lyuji Ozawa, Chemical Review, v103 n10 (2003) 3835.
[4 ] 楊俊英著,“電子產業用螢光材料之應用調查”,工研院 民國81年。
[5 ] 陳昱霖,”柘榴石(Y3Al5O12)螢光體之合成與性質研究”,國立成功大學材料科學及工程學系碩士論文,民國90年。
[6 ] D.R.Vij, “Luminescence in Solids” Plenum press, New York (1998).
[7 ] S. Shionoya, and W. M. Yen, “Phosphor Handbook”, CRC press (1999).
[8 ] R.C. Ropp, Design of Phosphors, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, chapter 8 (1991).
[9 ] G. Blasse, “Handbook on the Physics and Chemistry of Rare Earths” Vol.4, North-Holland (1979) p.237.
[10 ] J. A. Kaduk,W. Wong-Ng,W. Greenwood, J. Dillingham and B. H. Toby, Journal of Research of the National Institute of Standards and Technology ,104, 147,(999)
[11 ] Aleksander Jablonski (1898-1980): Born in Voskresenovka, Ukraine. Started studying physics at Kharkov University and continued after the 1st World War at Warsaw under S. Pienkowski. He received his PhD in 1930. In 1935 he suggested the famous diagram, commonly known under his name, which makes it possible to explain both the kinetics and spectra of fluorescence, phosphorescence and delayed fluorescence.
[12 ] Jos’e Apuleyo Hern’andez-Pe’res, Maria-Elena Villfuerte-Castrejon, and Lauro Bucio, Acta Crystallographica section E, E61,i23, (2005).
[13 ] Michael H. Huang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, and Peidong Yang, “Catalytic Growth of Zinc Oxide Nanowiresby Vapor Transport” ,Adv. Mater., 13, 113-116,(2001).
[14 ] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt,B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys., 79, 7983,(1996).
[15 ] Neeraj Khare, Menno J. Kappers, Ming Wei, Mark G.Blamire, and Judith L.MacManus-Drissoll, “Defect-Induced Ferromagnetism in Co-doped ZnO”,Adv. Mater., 18, 1449-1452,(2006).
[16 ] Shun-ichi Kubota, Yuugo Suzuyama, Hisanori Yamane, Masahiko Shimada, “Luminescence properties of LiSr2Y1-xLnxO4 (Ln=Eu,Tb,Tm) (0≦X≦1)”, Journal of Alloys Compounds 268,66-71,(1998).
[17 ] G.Blasse and B.C.Grabmaier , “Luminescencnt Materials”, Springer Verlag , Berlin Heidelberg,(1994) , p.14.
[18 ] M.J.J. Lammers, H. Donker, and G. Blasse,“The luminescence of Eu3+,Tb3+,Tm3+activated Gd2BaZnO5 and La2BaZnO5”,Materials Chemistry and Physics,13,527-539,(1985).
[19 ] G. Blasse, “Handbook on the physics and chemistry of rare earths”, Vol.4, (1979), p.237.
[20 ]G.Blasse and B.C.Grabmaier , “Luminescencnt Materials”, Springer Verlag , Berlin Heidelberg,(1994) , p.100.
[21 ] J. Garcia Sole, L.E. Bausa and D. Jaque, “An introduction to optical Spectroscopy of Inorganic Solids”, John Wiley & Sons, Ltd, (2005) , p.189
[22 ] J. Garcia Sole, L.E. Bausa and D. Jaque, “An introduction to optical Spectroscopy of Inorganic Solids”, John Wiley & Sons, Ltd, (2005) , p.191
[23 ] Soo Yeon Seo, Kee-Sun Sohn, Hee Dong Park, and SeonghooLeea, “Optimization of Gd2O3-Based Red PhosphorsUsing Combinatorial Chemistry Method”,Journal of The Electrochemical Society, 149,H12-H18,(2002).
[24 ]M.J. Weber ,"Multiphonon relaxation of rare-earth ions in yttrium
orthoaluminate,"Phys. Rev. B8,(1993) ,54.
[25 ]J. Garcia Sole, L.E. Bausa and D. Jaque, “An introduction to optical Spectroscopy of Inorganic Solids”, John Wiley & Sons, Ltd, (2005) , p.207.
[26 ] D. Capsonia, M. Bini, V. Massarottia,, P. Galinetto ,Solid State Communications, 122 ,(2002) , 367–372.
[27 ] G.Blasse and B.C.Grabmaier , “Luminescencnt Materials”, Springer Verlag , Berlin Heidelberg,(1994) , p.100.
[28 ] B.R.Judd , “Optical Absorption Intensities of Rare-Earth Ions“, Phys.Rev.127 ,(1962),750.
[29 ] G.S.Ofelt , “Intensities of Crystal Spectra of Rare-Earth Ions”, J.Chem.Phys.3,(1962),511.
[30 ] W.C. Nieuwport, G. Blasse, “ Linear Crystal Field Terms and the 5D0-7F0 Transition of the Eu3+ Ion” ,Soild State Commum.4, (1966),227.
[31 ] E.J. Kiss, H.A. Weakliem, Phys.Rev.Latters ,15,(1965) ,457.
[32 ] S. Polizzi, M. Battagliarin,, M. Bettinelli, A. Speghini, and G. Gagherazzi, “Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis”, J. Mater. Chem., 12 (2002) 742.
[33 ] W. J. L. Oomen, and A. M. A. van Dongen, “Europium (III) in oxide glasses : Dependence of the emission spectrum upon glass composition”, J. Non-Cryst. Solids 111 (1989) 205.
[34 ] Yu-Chun Li, Yen-Hwei Chang, Yu-Feng Lin,a Yee-Shin Chang, and Yi-Jing Lina, “Green-Emitting Phosphor of LaAlGe2O7:Tb3+ under Near-UV Irradiation” Electrochemical and Solid-State Letters, 9,(2006),H74-H77.
[35 ] G. Blasse,Philips Res. Rep.24,(1969),131.
[36 ] R. Schmechel,, H. Winkler, L. Xaomao, M. Kennedy, M. Kolbe, A. Benker, M.Winterer, R. A. Fischer, H. Hahn, and H. von Seggern, “Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environments” Scripta Mater. 44 (2001) 1213.
[37 ] H. S. Nalwa,L. S. Rohwer “Handbook of Luminescence,Display Materials,and Devices-Inorganic Display Materials”, American Scientific Publishers,(2003) ,p.148.
[38 ] Y. Nakanishi, A. Wakahara, H. Okada, A. Yoshida, T. Ohshima, and H. Itoh, “Effect of Alloy Composition on Photoluminescence Properties of Europium Implanted AlGaInN”, Phys. Stat. Sol. (c) v0 n1 (2002) 461.
[39 ]林暉然, “YXInGe2O7:R1-X(R = Eu, Tb, Tm)之螢光特性研究”國立成功大學材料所碩士論文(2006),p.64.
[40 ] S. Shionoya, W.M. Yen, Phosphor Handbook, CRC Press, Boca Raton,
(1999), p. 190.
[41 ] Kenkichi Moria, Hirotaka Ogawaa, Akinori Kana, Hitoshi Ohsatob, “Relationships between Sr substitution for Ba and dielectric characteristics in
Sm2BaZnO5 ceramics”,Journal of the European Ceramic Society, 24, (2004), 1745–1748.
[42 ] Hirotaka Ogawa , Akinori Kan , Shuhei Yokota a, Hitoshi Ohsato , Soichi Ishihara , “Microwave dielectric properties and crystal structure refinements
in M (M=Sr, Ca) doped Nd2(Ba1-xMx)ZnO5 solid solutions”Journal of the European Ceramic Society 21 (2001) 1731–1734
[43 ] Qiang Su, Jun Lin, Bin Li, “Luminescent properties of Dy3+ ion in Ca8Mg(SiO4)4Cl2”, Journal of Alloys and Compound, 225,(1995),120.
[44 ] Yuhua Wang , Lingli Wang, “Photoluminescence properties of Y0.95-xMxBO3:Eu3+(M=Ca,Sr,Zn,Al, 0≦x≦0.1)in 100-450 nm regions”,Materials Letters, 60,(2006) ,2645.
[45 ] J.Qiu, K.Hirao, “Long lasting phosphorescence in Eu2+-doped calcium aluminoborate glasses”, Solid State Commun.106(1998) 795.
[46 ] Ying Fang, Weidong Zhuang, Yunsheng Hu, Xinyu Ye ,Xiaowei Huang, “Luminescent properties of Dy3+ ion in Ca8Mg(SiO4)4Cl2”,J. Alloy Comp.(2007) in press.
[47 ] J.C. Krupa, I. Gerard, P.Martin, J.Alloys Comp.188 (1992) 77.
[48 ] H. Choi, C.H. Kim, C.H. Pyun, S.J. Kim, “Luminescence of (Ca, La)S : Dy”,
J. Lumin.82(1999) 25.
[49 ] William M. Yen,and Marvian J. Weber, “Inorganic Phosphor”, CRC press ,(2004),p.170 & p.220.
[50 ] D. L. Dexter and J. H. Schulman, J.Chem. Phys.,22 , (1954),1063.
[51 ] A. F. Andreeva and V. A. Ogorodnik, “Optical absorption of terbium oxide”, Phys. Status Solidi B, 117, (1983),K57.
[52 ] P. Dorenbos,“The 4fn→4f n-15d transitions of the trivalent lanthanides
in halogenides and chalcogenides”,Journal of Luminescence 91 (2000) 91-106.
[53 ] G. Blasse, A.Bril,“Investigations of Tb3+-activated phosphors”, Philips Res.Repts22 (1967) 481.
[54 ] A.M. Srivastava, “On the luminescence of Bi3+ in the pyrochloreY2Sn2O7”
Materials Research Bulletin 37 (2002) 745.
[55 ] Dongdong Jia, Jing Zhu, and BoqunWu, “Trapping Centers in CaS:Bi3+ and CaS:Eu2+,Tm3+” Journal of Electrochemical Society 147(1) (2000) 386.
[56 ] Yet-Ming Chiang, “Physical Ceramics”, John Wiley & Sons,Inc. (1997 ),p.16.
[57 ] A.A. Setlur, A. M. Srivastava,“The nature of Bi3+ luminescence in garnet Host”,optical materials 29 (2006) 410.
[58 ] Jinyong Kuang and Yingliang Liu, “Luminesence properties of a Pb2+ Activated long-afterglow phosphor”, Journal of The Electrochemical Society, 153 ,(2006),G245.
[59 ] M. Ilmer, B.C. Grabmaier, G. Blasse,“Luminescence of Bi3+ in gallate garnets„, Chem. Mater. 6 (1994) 204.
[60 ] W.N. Kim, H.L. Park, G..C.Kim, “Lithium solubility limit in ZnGa2O4:Bi3+0.001,Li+ phosphor” ,Materials latter 59(2005) 2433.
[61 ]X.M. Liu, “Enhanced luminescence of gadolinium niobates by Bi3+ doping for field emission displays”J. Lin, Journal of Luminescence 122 (2007)700.
[62 ] J.A. Duffy, “Bonding energy levels & bands in Inorganic solids”John Wiley & Sons,Inc.,NeW York (1990),p.68.