簡易檢索 / 詳目顯示

研究生: 楊竣傑
Yang, Jun-Jie
論文名稱: 以乳化超臨界二氧化碳流體進行高深寬比奈米孔洞填充之研究
High aspect ratio nano-hole filling employing emulsified supercritical CO2 electrolytes
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 105
中文關鍵詞: 超臨界二氧化碳電沉積高深寬比疏水性
外文關鍵詞: Supercritical carbon dioxide, Electrodeposition, High aspect ratio, Hydrophilic, Hydrophobic
相關次數: 點閱:108下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以乳化超臨界二氧化碳電鍍法,於高深寬比之陽極氧化鋁奈米孔洞中沉積銅金屬,在不添加促進劑及抑制劑的鍍液中,進行超填充的可行性。研究中所使用的奈米孔洞為陽極氧化鋁(Anodic Aluminum Oxide;AAO)模板,利用純鋁在特定電解液下,進行定電位的氧化,可生成高規則孔洞陣列結構,孔道筆直均勻,且依據施予的電壓不同、時間不同,可生成不同孔徑、不同深度之高深寬比孔洞,之後再移除純鋁基材和阻礙層,使其形成穿孔。並藉由C14H19F13O3Si來改變試片之表面能,使其形成疏水性的表面。本研究分別就AAO模板與表面改質(利用C14H19F13O3Si進行表面改質)之AAO模板進行填充,其結果顯示,在填充AAO模板時,傳統常壓與乳化超臨界二氧化碳製程皆可使電解液進入奈米孔洞,且當孔徑大小僅38 nm時,電解液仍可進入奈米孔道當中,但當孔洞深度增長時,乳化超臨界二氧化碳製程填滿速率則比較快速:而在表面改質之AAO模板,傳統常壓製程則無法使電解液進入奈米孔洞當中,若將傳統鍍浴與超臨界二氧化碳乳化後,降低鍍浴之表面張力,則可使液體進去孔洞當中並完全填滿,進而利用電鍍法使銅金屬能完整的由下向上沉積。

    In this study, Cu coatings electrodeposited into high-aspect-ratio anodic aluminum oxide substrates (AAO substrate) via emulsified supercritical carbon dioxide (sc-CO¬2) bath without accelerator and inhibitor addition to evaluate the possibility of super-filling. AAO is a self-organized and ordering porous nano-structure. It has diameters of 5-250 nm and high aspect ratio depending on the appropriate anodization conditions. After anodizing, the aluminum substrate and barrier layer will be removed and become the nano through hole. Change the surface energy with C14H19F13O3Si to form a hydrophobic surface. There are two types of AAO mold in this study including hydrophilic AAO and hydrophobic AAO (surface modification with C14H19F13O3Si). The experimental results showed that Cu can be electrodeposit into nano holes of the hydrophilic AAO in conventional bath and emulsified sc-CO2 bath. Electrolyte can enter nano holes which is only 38 nm but the electrodeposition rate in emulsified sc-CO2 bath is faster than in conventional bath when the length of nano holes are more larger. However in hydrophobic AAO, the Cu metal couldn’t be deposited in conventional bath. In contrary, the Cu metal was successfully deposited into the nano hole of hydrophobic AAO, due to its low surface tension.

    摘要 I Abstract II 誌謝 VII 總目錄 IX 表目錄 XII 圖目錄 XIII 第一章 前言 1 第二章 文獻回顧 3 2-1 表面處理技術 3 2-2 超臨界流體概論 4 2-2-1超臨界二氧化碳流體之性質及應用 4 2-2-2 微乳化機制 5 2-2-3 界面活性劑所扮演的角色 6 2-3 超臨界二氧化碳流體之電鍍技術 8 2-4 高深寬比電鍍技術之應用 10 2-4-1 超填充(Super-filling)狀態 11 2-4-2 添加劑的功用 12 2-4-3 超音波震盪電鍍填孔 13 2-4-4超臨界填孔技術 14 2-4-5 高深寬比電鍍技術之應用 17 2-5 陽極氧化鋁(Anodic Aluminum Oxide;AAO) 18 2-5-1 AAO製備方法與結構 19 2-5-2 AAO之成長機制 20 2-6 接觸角性質 22 2-7 C14H19F13O3Si性質 23 第三章 實驗步驟 51 3-1 試片製備 51 3-1-1 AAO模板製作 51 3-1-2 表面改質之AAO模板製作 51 3-2超臨界流體電鍍系統 52 3-2-1 電鍍設備 52 3-2-2 電解液組成 53 3-2-3 電鍍製程 53 3-2-4 實驗架構 53 3-3 試片分析 54 3-3-1 AAO模板形貌分析 54 3-3-2 AAO模板接觸角分析 54 3-3-3 銅鍍層之橫截面觀察 54 第四章 結果與討論 62 4-1 AAO基材分析 62 4-1-1 孔洞大小與長度分析 62 4-1-2 AAO接觸角分析 63 4-2 AAO模板填充行為 63 4-2-1填充AAO模板 64 4-2-2孔徑大小的影響 65 4-2-3孔洞長度的影響 67 4-2-4電流密度之影響 68 4-3 表面改質之AAO模板填充行為 69 4-4 試片接觸角差異討論 71 第五章 結論 99 第六章 未來研究方向 100 參考資料 101

    [1] Z. Wang, L. Wang, N.T. Nguyen, W.A.H. Wien, H. Schellevis, P.M. Sarro, J.N. Burghartz, Silicon micromachining of high aspect ratio, high-density through-wafer electrical interconnects for 3-D multichip packaging, Ieee Transactions on Advanced Packaging, 29 (2006) 615-622.
    [2] J.K. Luo, D.P. Chu, A.J. Flewitt, S.M. Spearing, N.A. Fleck, W.I. Milne, Uniformity control of Ni thin-film microstructures deposited by through-mask plating, J. Electrochem. Soc., 152 (2005) C36-C41.
    [3] M. Hayase, M. Taketani, K. Aizawa, T. Hatsuzawa, K. Hayabusa, Copper bottom-up deposition by breakdown of PEG-Cl inhibition, Electrochemical and Solid State Letters, 5 (2002) C98-C101.
    [4] J.J. Kelly, A.C. West, Copper deposition in the presence of polyethylene glycol - II. Electrochemical impedance spectroscopy, J. Electrochem. Soc., 145 (1998) 3477-3481.
    [5] C.H. Lee, S.C. Lee, J.J. Kim, Improvement of electrolessly gap-filled Cu using 2,2 '-dipyridyl and bis-(3-sulfopropyl)-disulfide (SPS), Electrochemical and Solid State Letters, 8 (2005) C110-C113.
    [6] Q. Chen, Z. Wang, J. Cai, L. Liu, The influence of ultrasonic agitation on copper electroplating of blind-vias for SOI three-dimensional integration, Microelectronic Engineering, 87 (2010) 527-531.
    [7] A.T. Katsuhiro OTA, Supercritical CO2-pulse cleaning in deep micro-holes, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2 (2008) 619-628.
    [8] M.O. Pakavadee Ratanajiajaroen Preparation of highly porous β-chitin structure through nonsolvent-solvent exchange-induced phase separation and supercritical CO2 drying, J. of Supercritical Fluids, 68 (2012) 31-38.
    [9] A. Piras, A. Rosa, B. Marongiu, A. Atzeri, M.A. Dessi, D. Falconieri, S. Porcedda, Extraction and Separation of Volatile and Fixed Oils from Seeds of Myristica fragrans by Supercritical CO2: Chemical Composition and Cytotoxic Activity on Caco-2 Cancer Cells, Journal of Food Science, 77 (2012) C448-C453.
    [10] H. Yoshida, M. Sone, H. Wakabayashi, H. Yan, K. Abe, X.T. Tao, A. Mizushima, S. Ichihara, S. Miyata, New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film, Thin Solid Films, 446 (2004) 194-199.
    [11] S.-T. Chung, Y.-C. Chuang, S.-Y. Chiu, W.-T. Tsai, Effect of H3PO3 concentration on the electrodeposition of nanocrystalline Ni-P deposited in an emulsified supercritical CO2 bath, Electrochimica Acta, 58 (2011) 571-577.
    [12] S.-T. Chung, W.-T. Tsai, Effect of pressure on the electrodeposition of nanocrystalline Ni-C in supercritical CO2 fluid, Thin Solid Films, 518 (2010) 7236-7239.
    [13] 李承育, 以乳化超臨界二氧化碳電鍍法沉積填充高深寬比微孔洞之研究, 國立成功大學材料科學及工程學系碩士論文, (2013).
    [14] H. Honma, Plating technology for electronics packaging, Electrochimica Acta, 47 (2001) 75-84.
    [15] J.W. Schultze, A. Bressel, Principles of electrochemical micro- and nano-system technologies, Electrochimica Acta, 47 (2001) 3-21.
    [16] F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, S. Kawata, Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures, Applied Physics Letters, 88 (2006).
    [17] T.Clifforo, FUNDAMENTALS OF SUPERCRITICAL FLUIDS, Unitied Kingdom: Oxford University Press, 1999.
    [18] J.M.P. R. C. Reid, B. E. Poling, The Properties of Gases and Liquids, New York: McGraw-Hill1986.
    [19] J.R. Williams, A.A. Clifford, S.H.R. Al-Saidi, Supercritical fluids and their applications in biotechnology and related areas, Molecular Biotechnology, 22 (2002) 263-286.
    [20] J.A. Darr, M. Poliakoff, New directions in inorganic and metal-organic coordination chemistry in supercritical fluids, Chem. Rev., 99 (1999) 495-541.
    [21] M. Lora, I. Kikic, Polymer processing with supercritical fluids: An overview, Separation and Purification Methods, 28 (1999) 179-220.
    [22] B. Subramaniam, R.A. Rajewski, K. Snavely, Pharmaceutical processing with supercritical carbon dioxide, Journal of Pharmaceutical Sciences, 86 (1997) 885-890.
    [23] G.L. Weibel, C.K. Ober, An overview of supercritical CO2 applications in microelectronics processing, Microelectronic Engineering, 65 (2003) 145-152.
    [24] W. Ryoo, S.E. Webber, K.P. Johnston, Water-in-carbon dioxide microemulsions with methylated branched hydrocarbon surfactants, Industrial & Engineering Chemistry Research, 42 (2003) 6348-6358.
    [25] Y. Einaga, Phase diagram of dilute micelle solutions of polyoxyethylene alkyl ethers, Polymer Journal, 39 (2007) 1082-1083.
    [26] O.S. S. Kaneshina, M. Nakamura, Effect of pressure on the cloud point of nonionic surfactant solutions and the solubilization of hydrocarbons, Bulletin of the Chemical Society of Japan, 52 (1979) 42-44.
    [27] H. Yan, M. Sone, A. Mizushima, T. Nagai, K. Abe, S. Ichihara, S. Miyata, Electroplating in CO2-in-water and water-in-CO2 emulsions using a nickel electroplating solution with anionic fluorinated surfactant, Surface & Coatings Technology, 187 (2004) 86-92.
    [28] H. Yan, M. Sone, N. Sato, S. Ichihara, S. Miyata, The effects of dense carbon dioxide on nickel plating using emulsion of carbon dioxide in electroplating solution, Surface & Coatings Technology, 182 (2004) 329-334.
    [29] M.S. Kim, C.K. Kim, Nickel electroplating on copper substrate in plating solution containing high-density CO2, Journal of Industrial and Engineering Chemistry, 11 (2005) 876-882.
    [30] M.S. Kim, J.Y. Kim, C.K. Kim, N.K. Kim, Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2, Chemosphere, 58 (2005) 459-465.
    [31] M. Saadaoui, H. van Zeijl, W.H.A. Wien, H.T.M. Pham, C. Kwakernaak, H.C.M. Knoops, W.M.M.E. Kessels, R.M.C.M. van de Sanden, F.C. Voogt, F. Roozeboom, P.M. Sarro, Enhancing the Wettability of High Aspect-Ratio Through-Silicon Vias Lined with LPCVD Silicon Nitride or PE-ALD Titanium Nitride for Void-Free Bottom-Up Copper Electroplating, IEEE Trans. Compon. Pack. Manuf. Technol., 1 (2011) 1728-1738.
    [32] C.U. P. C. Andricacos, J. O. Dukovic, J. Horkans, H. Deligianni, IBM Jounral of Research and Developement, 42 (1998) 383.
    [33] K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, D.P. Barkey, High-aspect-ratio copper-via-filling for three-dimensional chip stacking - II. Reduced electrodeposition process time, J. Electrochem. Soc., 152 (2005) H173-H177.
    [34] A.H. Romang, J.J. Watkins, Supercritical Fluids for the Fabrication of Semiconductor Devices: Emerging or Missed Opportunities?, Chem. Rev., 110 (2010) 459-478.
    [35] J. Ke, W.T. Su, S.M. Howdle, M.W. George, D. Cook, M. Perdjon-Abel, P.N. Bartlett, W.J. Zhang, F. Cheng, W. Levason, G. Reid, J. Hyde, J. Wilson, D.C. Smith, K. Mallik, P. Sazio, Electrodeposition of metals from supercritical fluids, Proc. Natl. Acad. Sci. U. S. A., 106 (2009) 14768-14772.
    [36] P.N. Bartlett, D.C. Cook, M.W. George, J. Ke, W. Levason, G. Reid, W.T. Su, W.J. Zhang, Phase behaviour and conductivity study on multi-component mixtures for electrodeposition in supercritical fluids, Phys. Chem. Chem. Phys., 12 (2010) 492-501.
    [37] N. Shinoda, T. Shimizu, T.-F.M. Chang, A. Shibata, M. Sone, Cu electroplating using suspension of supercritical carbon dioxide in copper-sulfate-based electrolyte with Cu particles, Thin Solid Films, 529 (2013) 29-33.
    [38] K. Nielsch, F. Muller, A.P. Li, U. Gosele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Advanced Materials, 12 (2000) 582-586.
    [39] K. Nielsch, R. Hertel, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S.F. Fischer, H. Kronmuller, Switching behavior of single nanowires inside dense nickel nanowire arrays, Ieee Transactions on Magnetics, 38 (2002) 2571-2573.
    [40] Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties, Applied Physics Letters, 76 (2000) 2011-2013.
    [41] A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, Journal of Applied Physics, 84 (1998) 6023-6026.
    [42] A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina, Advanced Materials, 11 (1999) 483-+.
    [43] Y. Kanamori, K. Hane, H. Sai, H. Yugami, 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask, Applied Physics Letters, 78 (2001) 142-143.
    [44] C.H. Yoon, J.S. Suh, Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates, Bulletin of the Korean Chemical Society, 23 (2002) 1519-1523.
    [45] D. Routkevitch, A.N. Govyadinov, P.P. Mardilovich, High aspect ratio, high resolution ceramic MEMS, 2000.
    [46] G.E. Thompson, Porous anodic alumina: Fabrication, characterization and applications, Thin Solid Films, 297 (1997) 192-201.
    [47] O. Jessensky, F. Muller, U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina, Applied Physics Letters, 72 (1998) 1173-1175.
    [48] F. Rupp, L. Scheideler, J. Geis-Gerstorfer, Effect of heterogenic surfaces on contact angle hysteresis: Dynamic contact angle analysis in material sciences, Chemical Engineering & Technology, 25 (2002) 877-882.
    [49] J.S. Rowlinson, B. Widom, Molecular theory of capillarity, 1982.
    [50] L. Gao, Y. Lu, X. Zhan, J. Li, Q. Sun, A robust, anti-acid, and high-temperature-humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane, Surface & Coatings Technology, 262 (2015) 33-39.
    [51] C.E. Ho, W.Z. Hsieh, C.C. Chen, M.K. Lu, Electron backscatter diffraction analysis on the microstructures of electrolytic Cu deposition in the through hole filling process: Butterfly deposition mode, Surface & Coatings Technology, 259 (2014) 262-267.
    [52] J. Deval, T.A. Umali, E.H. Lan, B. Dunn, C.M. Ho, Reconfigurable hydrophobic/hydrophilic surfaces in microelectromechanical systems (MEMS), Journal of Micromechanics and Microengineering, 14 (2004) 91-95.
    [53] 鍾松廷, 於含有超臨界二氧化碳流體之電解液中以電鍍法製備鎳基鍍層及材料特性之研究, (2011).

    下載圖示 校內:2018-08-10公開
    校外:2018-08-10公開
    QR CODE