簡易檢索 / 詳目顯示

研究生: 詹定縢
Jhan, Ding-Tang
論文名稱: 綠島公館鼻安山岩的岩象與岩石磁學特性之研究
Study on the petrography and magnetic property of andesite in Gonguanbi in Lutao island of Taiwan
指導教授: 陳燕華
Chen, Yen-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 192
中文關鍵詞: 岩石磁學磁性礦物自我反轉磁力顯微鏡
外文關鍵詞: magnetic mineral, andesite, multi-domain, maghemite
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 北呂宋島弧系列的地質研究對於了解台灣的地質歷史是一個很重要的材料,自然界中的岩礦可以記錄許多訊息,例如自然界中的磁性礦物可以保留當下古地磁的方向以及其強度,但因為岩石複雜的化學組成成分,在自然界中的風化與化學作用影響,許多訊息都變得更加複雜且難以運用。因此本研究藉由岩石磁學、岩象學分析、地球化學分析及實驗室模擬合成等方法,將複雜的問題抽絲剝繭合理解釋並進一步推論出結果。本研究以綠島公館鼻熔岩流為例,初步的岩石磁學分析發現同一個地點記錄到多種古地磁紀錄,有穩定正向、隨著熱退磁正向反向自我反轉與穩定反向三種古地磁記錄模式。為了探討多種古地磁紀錄造成的原因,由光薄片觀察其微觀礦物組織之異同,再運用地球化學分析了解不同古地磁紀錄的岩層是否因不同的化學成分組成所導致。從本研究中發現雖然所含的磁性礦物皆為貧鈦的磁赤鐵礦,但因為氧化程度的不同造成礦物磁特性的差異。亦即貧鈦磁赤鐵礦在加熱過程中會造成結構的改變導致岩石磁學的反轉。在絕對強度上,本研究發現微觀與巨觀的趨勢有著正相關的連結,也許在探討巨觀古地磁的絕對強度時,磁力顯微鏡可以是個不錯的工具提供不一樣的研究資訊,在古地磁或是地質領域上可以提供相關的協助及研究。而與合成礦物相互比較,發現在顆粒小於3000 nm時,磁區模式皆為單磁區,比巨觀磁性所推測的臨界半徑大,因此在自然界中能觀測到擬單磁區的情形,在實驗室合成顆粒亦能觀察到。

    Rock magnetic properties including remanent magnetization、magnetic susceptibility and magnetic coercivity .All of them are controlled by magnetic mineral in the rock. Therefore, comprehend mineral magnetism is important section to interpret rock magnetic properties. In this study we focus on magnetic mineral in Gonguanbi andesite. First, we find out there are three result in nature remanent magnetization (NRM)(a) stable normal polarity in case GN163、GN165、GN171.(b)Self-reverse in 320℃、360℃ in case GN167.(c) stable reversal polarity in case GN168、GN169. Second, we identify mineral phases in Gonguanbi andesite by X-ray Diffractometer and X-ray photoelectron spectroscopy. Magnetic mineral in Gonguanbi is maghemite. Because XRD characteristic peak (3 1 1) at 35.5∘is more near XRD characteristic peak (311) 35.6∘of maghemite. We also confirm mineral phase by X-ray photoelectron spectroscopy (XPS). Fe3+and Fe2+ composition ratio in Gonguanbi is 95/5. Magnetite Fe3+and Fe2+ composition ratio is 67/33, Maghemite Fe3+and Fe2+ composition ratio is 100/0. So, we confirm magnetic mineral in Gonguanbi is maghemite. However, we observe MFM in Gonguanbi sample more than 95% magnetic mineral are multi-domain. It is different from Penghu.

    目錄 中文摘要 ii Abstract I 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XV 第一章緒論 1 1.1地質背景 1 1.2磁學研究 5 1.3 研究動機 16 第二章基本理論 19 2.1 磁性 19 2.1.1弱磁性 19 2.1.2強磁性 21 2.2磁性礦物 22 2.2.1磁鐵礦(Magnetite) 23 2.2.2鈦磁鐵礦(Titanomagnetite) 24 2.2.3鈦鐵礦(Ilmenite) 25 2.2.4赤鐵礦(Hematite) 26 2.2.5磁赤鐵礦(Maghemite) 26 2.3殘磁種類 27 2.3.1原生殘磁(PRM) 28 2.3.2次生殘磁(SRM) 29 2.4磁學參數 29 2.4.1磁化率(magnetic susceptibility) 30 2.4.2飽和磁化量(Saturation magnetization, Ms) 30 2.4.3殘磁矯頑力(Coercivity, Hc) 31 2.4.4飽和殘磁(Remanent saturation magnetization,Mrs) 31 2.5地球化學分析 31 2.5.1主要元素(Major elements) 32 2.5.2微量元素(Trace elements) 32 第三章 岩石樣本採集及分析方法 34 3.1岩石樣本及採樣 34 3.2合成磁性礦物 37 3.3實驗流程 39 3.4 X光粉末繞射儀分析(XRD) 40 3.5化學分析電子光譜儀-XPS (ESCA) 42 3.6掃描式電子顯微鏡(SEM) 43 3.7穿透式電子顯微鏡(TEM) 44 3.8偏光顯微鏡 45 3.9地球化學分析 46 3.10巨觀磁性分析 48 3.10.1熱退磁分析 48 3.10.2磁滯曲線參數 49 3.11磁力顯微鏡(MFM) 50 第四章結果與討論 52 4.1岩石磁學分析 52 4.1.1巨觀磁學 熱退磁分析 52 4.1.2巨觀磁學 殘磁方向 58 4.1.3巨觀磁學 磁滯曲線分析 62 4.1.5微觀磁性分析 68 4.1.6單磁區樣本 91 4.2綠島公館鼻岩性觀察 93 4.2.1岩象學觀察 93 4.2.2綠島岩樣XRD礦物相分析 108 4.2.3 XPS鐵氧化態分析 114 4.2.4 SEM 岩相觀察分析 120 4.2.5地球化學分析 134 4.3 實驗室合成結果 141 4.3.1合成方法 141 4.3.2 合成樣本礦物相鑑定 143 4.3.3 TEM分析 147 4.3.4 VSM測量 149 4.3.5 MFM觀察 152 第五章 討論 155 5.1岩石磁學討論 155 5.2岩相學討論 156 5.3合成顆粒探討 157 5.4本實驗的突破 158 第六章結論 159 參考文獻 163 圖目錄 圖1-1 北呂宋島弧位置圖。 3 圖1-2晚中新世的板塊隱沒圖 4 圖1-3綠島各期火山地質圖。 5 圖1-4 太平洋-南極洋脊上的所測得的磁力異常圖。 7 圖1-5 在樣本中不同的殘磁紀錄圖。 8 圖1-6巴西東北部花崗岩區火成岩經侵入岩漿剪切圖。 9 圖1-7 將磁性物質與非磁性物質灑於基板為觀結磁力圖。 10 圖1-8 鈦磁鐵礦在加熱前後與靜置一年後之MFM 影像圖。 11 圖1-9不同比例的鈷銥合金呈現之磁區圖。 12 圖1-10 小豆志摩島安山岩與大陸地殼不相容元素比較圖 13 圖1-11北呂宋島弧的岩漿演化模式顯示圖。 14 圖1-12 北呂宋島弧的雙弧構造模擬圖。 15 圖1-13北呂宋島弧岩漿演化鉿與釹同位素關係圖。 15 圖1-14綠島地質圖。 18 圖2-1 尼爾溫度前後的磁矩排列圖。 21 圖2-2 反鐵磁性與亞鐵磁性的磁矩排列方向比較圖。 21 圖2-3 鈦鐵氧化物的三相圖。 23 圖2-4 磁鐵礦為反尖晶石結構圖。 24 圖2-5鈦磁鐵礦在緩慢冷卻與快速上升冷卻比較圖 。 25 圖2-6 磁滯曲線上各種磁學參數示意圖。 30 圖2-7 硬磁性與軟磁性磁滯曲線圖。 31 圖2-8化學週期表。 33 圖3-1綠島安山岩新鮮樣本。 35 圖3-2綠島地質圖,及其定年圖表。 35 圖3-3本研究綠島公館鼻安山岩14處採樣點。 36 圖3-4實驗室分析樣本流程。 39 圖3-5 Bragg’s law示意圖。 41 圖3-6光粉末繞射儀(Bruker, D8 Advance) 41 圖3-7同步輻射實驗架設(TLS BL17A1)。 42 圖3-8成大貴重儀器中心化學分析電子光譜儀。 43 圖3-9掃描式電子顯微鏡產生訊號示意圖。 44 圖3-10成大貴重儀器中心軟物質穿透式電子顯微鏡。 45 圖3-11偏光顯微鏡。 46 圖3-12感應耦合電漿質譜儀。 48 圖3-13 熱去磁相關儀器。 49 圖3-14磁力顯微鏡磁力作用原理示意圖。 51 圖3-15磁力顯微鏡不同磁區壁示意圖。 51 圖4-1 熱退磁溫度點(25-660 ℃)對應殘磁強度示意圖。 55 圖4-2 Verwey transition 微分結果圖。 56 圖4-3 三個樣本的居禮溫度測量計算結果。 57 圖4-4樣本之熱退磁之殘磁方向數據點投影圖。 61 圖4-5樣本磁滯曲線分析圖。 66 圖4-6 磁赤鐵礦的晶格。 68 圖4-7將探針上磁方向調整,MFM磁力訊號圖。 69 圖4-8 將壓電陶瓷旋轉,MFM磁力訊號圖。 70 圖4-9不同抬高高度磁力影像圖。 71 圖4-10抬高高度與相位差的關係圖 71 圖4-11安山岩薄片磁性礦物磁區種類分布總計算。 73 圖4-12 樣本GN163有序多磁區之MFM影像圖。 74 圖4-13 GN163 20 μm上下之MFM影像圖。 75 圖4-14 GN163中大顆粒磁性礦物微觀磁性分析圖。 76 圖4-16 GN165中微觀磁性分析。 78 圖4-17樣本GN167有序多磁區之MFM影像圖。 79 圖4-18 GN167中20 μm微觀磁性分析。 80 圖4-19 GN167中30 μm微觀磁性分析。 81 圖4-20 巨觀磁力強度與微觀相差比較圖。 82 圖4-21 GN167 280 ℃時,微觀磁性相差圖。 83 圖4-22 GN167 320 ℃時,微觀磁性相差圖。 84 圖4-23 GN167 400 ℃時,微觀磁性相差圖。 85 圖4-24 GN168中280 ℃時微觀磁性分析。 86 圖4-25 GN169 在280 ℃熱退磁時3-5 μm微觀磁結構。 87 圖4-26 GN169 在280 ℃熱退磁時20 μm微觀磁結構。 88 圖4-27 GN169 280 ℃熱退磁時50 μm以上微觀磁結構。 89 圖4-28 GN171中在280 ℃熱退磁時微觀磁性分析。 90 圖4-29各樣本中單磁區礦物微觀磁性分析圖。 92 圖4-30 GN163 野外採樣之手標本及磨製薄片。 95 圖4-31綠島公館鼻GN163原岩薄片。 96 圖4-32 GN163中斜長石偏光顯微鏡下之聚片雙晶。 97 圖4-33綠島公館鼻GN165薄片。 99 圖4-34 GN167 野外採樣手標本與磨製薄片。 100 圖4-35綠島公館鼻GN167原岩薄片。 101 圖4-36光學顯微鏡下斜輝石蝕變成像照片。 102 圖4-37綠島公館鼻GN168薄片。 103 圖4-38 GN169 野外採樣手標本與磨製薄片。 104 圖4-39 光學顯微鏡下斜長石環狀消光。 105 圖4-40綠島公館鼻GN169原岩薄片。 106 圖4-41綠島公館鼻GN171薄片 107 圖4-42 全岩粉末XRD分析圖。 111 圖4-43磁選後樣品點的XRD繞射圖。 113 圖4-44磁選粉末繞射特徵峰放大圖。 114 圖4-45 XPS分析圖譜。 118 圖4-46相同倍率(100X)情況下,電子掃描顯微影像。 121 圖4-47 SEM中高鈦含量比例鈦鐵氧化物。 123 圖4-48 SEM中低鈦含量比例鈦鐵氧化物。 124 圖4-49自形晶到半自形均質鈦鐵氧化物。 125 圖4-50半自形到他形晶之鈦鐵氧化物。 125 圖4-51在輝石周圍明顯看到蝕變圈。 126 圖4-53 GN163、GN167長石EDS半定量分析結果圖。 128 圖4-54 GN169長石EDS半定量分析結果圖。 129 圖4-55 以長石礦物進行EDS的線元素掃描。 130 圖4-56 GN169長石line scanning 結果分析圖。 131 圖4-57 全岩化學成分之Na2O+K2O對SiO2作圖 135 圖4-58 全岩化學成分之AFM相圖。 135 圖4-59 全岩化學成分之∑FeO與∑FeO/MgO的相圖。 136 圖4-60原始地函標準化樣本化學成分分析圖。 138 圖4-61 球粒隕石標準化樣本化學成分分析圖。 139 圖4-62 台灣花東火山岩樣化學分析圖。 139 圖4-63(a)20 nm合成分布圖;(b)50 nm合成分布圖 140 圖4-64(a)100 nm合成顆粒分布圖 141 圖4-65(a)1000 nm; (b)3000 nm合成顆粒分布圖。 142 圖4-66 20 ~250 nm退火後之磁赤鐵礦XRD圖 143 圖4-68 500 nm ~ 3000 nm退火後之磁赤鐵礦XRD圖。 145 圖4-67 不同粒徑大小TEM影像圖。 147 圖4-68磁鐵礦粒徑與飽和殘磁與殘磁矯頑力關係圖。 148 圖4-71不同粒徑大小磁赤鐵礦的磁滯曲線圖。 150 圖4-72 20 nm 合成之磁赤鐵礦之微觀磁訊號。 151 圖4-73 50 、100 nm 合成之磁赤鐵礦之微觀磁訊號。 151 圖4-74 250 ~ 3000 nm 合成之磁赤鐵礦之微觀磁訊號。 153 表目錄 表1-1 綠島各期火山活動之特性 4 表2-1 各種殘磁類型 27 表3-1實驗藥品。 38 表4-1綠島安山岩樣本室溫熱退磁之磁偏角、磁傾角及磁感率與磁強度之表格。 54 表4-3 熱退磁各溫度點(25 ℃ -660 ℃) 之磁偏角、磁傾角以及磁感率之表格。 59 表4-4全岩粉末X光繞射分析礦物相。 112 表4-5綠島六個樣本所擬合結果計算後數據點面積分,以及所有數據點的各種鐵價態平均值比例。 119 表4-6樣本中長石比例表 127 表4-7 XRF 全岩化學分析表。 134 表4-8質譜儀分析結果。 137 表4-9水熱合成各種參數比例。 141

    宋聖榮(1990)台灣東部海岸山脈中段火山岩研究兼論北呂宋島弧的演變。國立台灣大學地質研究所博士論文,共251頁。
    宋聖榮(2007)台灣第四紀火山活動。經濟部中央地質調查所特刊,第18號,111-142頁。
    林國文(2012)綠島安山岩之實驗岩石學研究。國立臺灣師範大學地球科學研究所碩士論文,共86頁。
    莊文星(1988) 台灣新生代晚期火山岩之定年與地球化學:國立台灣大學海洋研究所博士論文,共231頁。
    莊文星、陳汝勤 (1989) 綠島安山岩內之堇青石之探討。經濟部中央地質調查所彙刊,第五號,第67-80頁。
    郭坤土(1980) 臺灣東部海岸山脈火成岩之分析研究。化學,第1號,12-15頁。
    陳文山、陳文雄、王源、黃敦友(1990)台灣海岸山脈之地層。經濟部中央地質調查所特刊,第4號,239-260頁。
    陳文山(2009) 海岸山脈火山島弧與碰撞盆地的地層架構與年代。Western pacific earth sciences, Vol.9, 67-98頁。
    陳正宏(1990)台灣之火成岩。經濟部中央地質調查所出版,共137頁。
    陳正宏、劉聰桂、楊燦堯、陳于高(1994)五萬分之一台灣地質圖說明書。經濟部中央地質調查,第65號,共57頁。
    楊燦堯、陳正宏(1990)綠島火山岩之核飛跡定年結果及其意義。中央研究院地球科學研究所集刊,第10卷,111-112頁
    楊燦堯(1992)北呂宋島弧岩漿之演化及其他地體構造模式。國立台灣大學地質學研究所博士論文,共458頁。
    福田方勝(2014) 鋳造磁石・圧延磁石 (特集 よくわかる磁性材料) -- (磁性材料各論)。特殊鋼 63(5), 31-33
    鄭弘泰(2005) 第一原理理論計算作為科學發現的工具: 磁鐵礦(magnetite)之電荷-軌道秩序 (charge-orbital ordering)和 Verwey 相變。物理雙月刊Vol.27 587-591頁。
    歐淑芬(2002) 海洋鑽探計劃504B井位蓆狀岩牆玄武岩中鈦磁鐵礦的特徵與轉變---及其在洋殼磁化作用上之意義。國立中山大學海洋資源學系研究所,共151頁。
    羅君豪(2020)澎湖玄武岩之巨觀與微觀磁特性研究。國立成功大學地球科學研究所碩士論文,共191頁。
    Alaria, J, Bouloudenine, M, Schmerber, G, Colis, S, Dinia, A, Turek, P, & Bernard, M. (2006). Pure paramagnetic behavior in Mn-doped ZnO semiconductors. Journal of Applied physics, 99(8), 08M118.
    Archanjo, Carlos J. (2020). Composite magmatic/magnetic fabrics evidences late AMS in syn-tectonic dikes in the Monteiro-Sume plutonic-volcanic complex (NE Brazil). Journal of Structural Geology, 140, 104154.
    Bajpai, OP, Setua, DK, & Chattopadhyay, S. (2014). A brief overview on ferrite (Fe3O4) based polymeric nanocomposites: recent developments and challenges. Journal of Research Updates in Polymer Science, 3(4), 184-204.
    Bian, Zhenfeng, Zhu, Jian, Wang, Shaohua, Cao, Yong, Qian, Xufang, & Li, Hexing. (2008). Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase. The Journal of Physical Chemistry C, 112(16), 6258-6262.
    Burgisser, Alain, & Scaillet, Bruno. (2007). Redox evolution of a degassing magma rising to the surface. Nature, 445(7124), 194-197.
    Butler, Robert F. (1992). Magnetic domains to geologic terranes: Blackwell.
    Butler, Robert F, & Banerjee, Subir K. (1975). Theoretical single‐domain grain size range in magnetite and titanomagnetite. Journal of Geophysical Research, 80(29), 4049-4058.
    Candela, Philip A. (1986). The evolution of aqueous vapor from silicate melts: Effect on oxygen fugacity. Geochimica et Cosmochimica Acta, 50(6), 1205-1211.
    Chang-Hwa, Chen, Yuch-Ning, Shieh, Typhoon, Lee, Cheng-Hong, Chen, & Mertzman, Stanley A. (1990). Nd-Sr-O isotopic evidence for source contamination and an unusual mantle component under Luzon Arc. Geochimica et Cosmochimica Acta, 54(9), 2473-2483.
    Chen, J, & Lin, F. (1980). Geochemistry of Lutao andesites. Acta Oceanogr. Taiwanica, 11, 49-69.
    Chen, Ju-Chin, & Huang, Ching-Bo. (1986). Geochemistry of Late Cenozoic Andesites from Taiwn. Paper presented at the Proceedings NSC, Part A.
    Day, Ron, Fuller, M, & Schmidt, VA. (1977). Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13(4), 260-267.
    De Groot, Lennart V, Fabian, Karl, Bakelaar, Iman A, & Dekkers, Mark J. (2014). Magnetic force microscopy reveals meta-stable magnetic domain states that prevent reliable absolute palaeointensity experiments. Nature Communications, 5(1), 1-10.
    Defant, Marc J, Jacques, Dario, Maury, Rene C, de Boer, Jelle, & Joron, Jean-Louis. (1989). Geochemistry and tectonic setting of the Luzon arc, Philippines. Geological Society of America Bulletin, 101(5), 663-672.
    Dietze, Frank, Kontny, Agnes, Heyde, Ingo, & Vahle, Carsten. (2011). Magnetic anomalies and rock magnetism of basalts from Reykjanes (SW-Iceland). Studia Geophysica et Geodaetica, 55(1), 109-130.
    Döbbelin, Markus, Jovanovski, Vasko, Llarena, Irantzu, Marfil, Luis J Claros, Cabañero, Germán, Rodriguez, Javier, & Mecerreyes, David. (2011). Synthesis of paramagnetic polymers using ionic liquid chemistry. Polymer Chemistry, 2(6), 1275-1278.
    Dunlop, David J. (1981). The rock magnetism of fine particles. Physics of the Earth and Planetary Interiors, 26(1-2), 1-26.
    Feinberg, Joshua M, Scott, Gary R, Renne, Paul R, & Wenk, Hans-Rudolf. (2005). Exsolved magnetite inclusions in silicates: Features determining their remanence behavior. Geology, 33(6), 513-516.
    Frandsen, Cathrine, Stipp, SLS, McEnroe, SA, Madsen, MB, & Knudsen, JM. (2004). Magnetic domain structures and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM). Physics of the Earth and Planetary Interiors, 141(2), 121-129.
    Ge, Kunpeng, & Liu, Qingsong. (2014). Effects of the grain size distribution on magnetic properties of magnetite: constraints from micromagnetic modeling. Chinese science bulletin, 59(34), 4763-4773.
    Gunnlaugsson, Haraldur Páll, Helgason, Ö, Kristjánsson, L, Nørnberg, P, Rasmussen, H, Steinþórsson, S, & Weyer, G. (2006). Magnetic properties of olivine basalt: Application to Mars. Physics of the Earth and Planetary Interiors, 154(3-4), 276-289.
    Hawkesworth, CJ, Gallagher, K, Hergt, JM, & McDermott, F. (1993). Mantle and slab contributions in arc magmas. Annual Review of Earth and Planetary Sciences, 21(1), 175-204.
    Heirtzler, James R, & Le Pichon, Xavier. (1965). Crustal structure of the mid‐ocean ridges: 3. Magnetic anomalies over the mid‐Atlantic ridge. Journal of Geophysical Research, 70(16), 4013-4033.
    Hitzman, Murray W, Oreskes, Naomi, & Einaudi, Marco T. (1992). Geological characteristics and tectonic setting of proterozoic iron oxide (Cu U Au REE) deposits. Precambrian research, 58(1-4), 241-287.
    Huang, Wentao, Jackson, Michael J, Dekkers, Mark J, Solheid, Peat, Zhang, Yang, Li, Shihu, . . . Ding, Lin. (2020). Remagnetization of red beds on the Tibetan Plateau: Mechanism and diagnosis. Journal of Geophysical Research: Solid Earth, 125(8), e2020JB020068.
    Humphreys, Madeleine CS, Brooker, RA, Fraser, DG, Burgisser, A, Mangan, Margaret T, & McCammon, Catherine. (2015). Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes. Journal of Petrology, 56(4), 795-814.
    Hunt, Christopher P, Moskowitz, Bruce M, & Banerjee, Subir K. (1995). Magnetic properties of rocks and minerals. Rock physics and phase relations: A handbook of physical constants, 3, 189-204.
    Inoue, S, Kayanne, H, Matta, N, Chen, WS, & Ikeda, Y. (2011). Holocene uplifted coral reefs in Lanyu and Lutao Islands to the southeast of Taiwan. Coral Reefs, 30(3), 581-592.
    Jiang, Zhaoxia, Liu, Qingsong, Dekkers, Mark J, Tauxe, Lisa, Qin, Huafeng, Barrón, Vidal, & Torrent, José. (2015). Acquisition of chemical remanent magnetization during experimental ferrihydrite–hematite conversion in Earth-like magnetic field—implications for paleomagnetic studies of red beds. Earth and Planetary Science Letters, 428, 1-10.
    Jiao, Juanying, Wang, Tao, Ma, Tianyong, Wang, Ying, & Li, Fashen. (2017). Achievement of diverse domain structures in soft magnetic thin film through adjusting intrinsic magnetocrystalline anisotropy. Nanoscale research letters, 12(1), 1-6.
    Juang, WS, & Bellon, H. (1984). The potassium-argon dating of andesites from Taiwan. Paper presented at the Proc. Geol. Soc. China.
    Juang, WJ, & Chiang, CC. (2004). Tidal current simulation on the east coast of Taiwan (4)-around the Ports of Suao and Hualien. Harbor and Marine Technology Center Report.
    Khamkongkaeo, Atchara, Mothaneeyachart, Napat, Sriwattana, Panus, Boonchuduang, Thanachai, Phetrattanarangsi, Thanawat, Thongchai, Chonnakan, . . . Phumying, Santi. (2017). Ferromagnetism and diamagnetism behaviors of MgO synthesized via thermal decomposition method. Journal of Alloys and Compounds, 705, 668-674.
    Kokelaar, BP, Howells, MF, Bevins, RE, Roach, RA, & Dunkley, PN. (1984). The Ordovician marginal basin of Wales. Geological Society, London, Special Publications, 16(1), 245-269.
    Lai, Yu-Ming, & Song, Sheng-Rong. (2013). The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc. Journal of Asian Earth Sciences, 74, 97-112.
    Lai, Yu-Ming, Song, Sheng-Rong, Lo, Ching-Hua, Lin, Te-Hsien, Chu, Mei-Fei, & Chung, Sun-Lin. (2017). Age, geochemical and isotopic variations in volcanic rocks from the Coastal Range of Taiwan: Implications for magma generation in the Northern Luzon Arc. Lithos, 272, 92-115.
    Lesiak, Beata, Rangam, N, Jiricek, P, Gordeev, I, Tóth, J, Kövér, L, . . . Borowicz, P. (2019). Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Frontiers in chemistry, 7, 642.
    Levi, Shaul, & Merrill, Ronald T. (1978). Properties of single‐domain, pseudo‐single‐domain, and multidomain magnetite. Journal of Geophysical Research: Solid Earth, 83(B1), 309-323.
    Lin, Jing-Yi, Hsu, Shu-Kun, Sibuet, Jean-Claude, Lee, Chao-Shing, & Liang, Chin-Wei. (2013). Plate tearing in the northwestern corner of the subducting Philippine Sea Plate. Journal of Asian Earth Sciences, 70, 1-7.
    Maeda, Kazuhiko. (2013). Direct splitting of pure water into hydrogen and oxygen using rutile titania powder as a photocatalyst. Chemical Communications, 49(75), 8404-8406.
    Marini, Jean-Christophe, Chauvel, Catherine, & Maury, René C. (2005). Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source. Contributions to Mineralogy and Petrology, 149(2), 216-232.
    May, Andrew F, Ovchinnikov, Dmitry, Zheng, Qiang, Hermann, Raphael, Calder, Stuart, Huang, Bevin, . . . McGuire, Michael A. (2019). Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS nano, 13(4), 4436-4442.
    Moskowitz, Bruce M, Jackson, Michael, & Kissel, Catherine. (1998). Low-temperature magnetic behavior of titanomagnetites. Earth and Planetary Science Letters, 157(3-4), 141-149.
    Nagata, T, Ishikawa, Y, Kinoshita, H, Kono, M, Syono, Y, & Fisher, RM. (1970). Magnetic properties and natural remanent magnetization of lunar materials. Geochimica et Cosmochimica Acta Supplement, 1, 2325.
    Neves, Cristina S, Quaresma, Pedro, Baptista, Pedro V, Carvalho, Patrícia A, Araújo, João Pedro, Pereira, Eulália, & Eaton, Peter. (2010). New insights into the use of magnetic force microscopy to discriminate between magnetic and nonmagnetic nanoparticles. Nanotechnology, 21(30), 305706.
    O'reilly, W. (2012). Rock and mineral magnetism: Springer Science & Business Media.
    Ort, Michael H, Porreca, M, & Geissman, John William. (2015). The use of palaeomagnetism and rock magnetism to understand volcanic processes: introduction. Geological Society, London, Special Publications, 396(1), 1-11.
    Ouyang, Tingping, Tang, Zhihua, Zhao, Xiang, Tian, Chengjing, Ma, Jinlong, Wei, Gangjian, . . . Bian, Yong. (2015). Magnetic mineralogy of a weathered tropical basalt, Hainan Island, South China. Physics of the Earth and Planetary Interiors, 240, 105-113.
    Plank, Terry, & Langmuir, Charles H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical geology, 145(3-4), 325-394.
    Rani, B Jansi, Ravina, M, Saravanakumar, B, Ravi, G, Ganesh, V, Ravichandran, S, & Yuvakkumar, R. (2018). Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles. Nano-Structures & Nano-Objects, 14, 84-91.
    Roberts, Andrew P, Hu, Pengxiang, Harrison, Richard J, Heslop, David, Muxworthy, Adrian R, Oda, Hirokuni, . . . Zhao, Xiang. (2019). Domain state diagnosis in rock magnetism: Evaluation of potential alternatives to the Day diagram. Journal of Geophysical Research: Solid Earth, 124(6), 5286-5314.
    Schult, A. (1970). Effect of pressure on the Curie temperature of titanomagnetites [(1− x) Fe3O4 − x TiFe2O4]. Earth and Planetary Science Letters, 10(1), 81-86.
    Seno, Tetsuzo, & Maruyama, Shigenori. (1984). Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, 102(1-4), 53-84.
    Shao, Wen-Yu, Chung, Sun-Lin, Chen, Wen-Shan, Lee, Hao-Yang, & Xie, Lie-Wen. (2015). Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny. Geology, 43(6), 479-482.
    Shen, Chuan-Chou, Lee, Typhoon, Chen, Chi-Yun, Wang, Chung-Ho, Dai, Chang-Feng, & Li, Lung-An. (1996). The calibration of D [Sr/Ca] versus sea surface temperature relationship for Porites corals. Geochimica et Cosmochimica Acta, 60(20), 3849-3858.
    Sivia, Deviderjit Singh. (2011). Elementary scattering theory: for X-ray and neutron users: Oxford University Press.
    Song, Sheng-Rong, & Lo, Huann-Jih. (2002). Lithofacies of volcanic rocks in the central Coastal Range, eastern Taiwan: implications for island arc evolution. Journal of Asian Earth Sciences, 21(1), 23-38.
    Sow, Chanchal, Yonezawa, Shingo, Kitamura, Sota, Oka, Takashi, Kuroki, Kazuhiko, Nakamura, Fumihiko, & Maeno, Yoshiteru. (2017). Current-induced strong diamagnetism in the Mott insulator Ca2RuO4. Science, 358(6366), 1084-1087.
    Swanson‐Hysell, Nicholas L, Fairchild, Luke M, & Slotznick, Sarah P. (2019). Primary and secondary red bed magnetization constrained by fluvial intraclasts. Journal of Geophysical Research: Solid Earth, 124(5), 4276-4289.
    Takagiwa, Hiroyuki, Akimitsu, Jun, Kawano-Furukawa, Hazuki, & Yoshizawa, Hideki. (2001). Coexistence of superconductivity and (anti-) ferromagnetism in RuSr2YCu2O8. Journal of the Physical Society of Japan, 70(2), 333-336.
    Tamura, Yoshihiko, & Tatsumi, Yoshiyuki. (2002). Remelting of an andesitic crust as a possible origin for rhyolitic magma in oceanic arcs: an example from the Izu–Bonin arc. Journal of Petrology, 43(6), 1029-1047.
    Tariq, Hussain Ahmed, Anwar, Muhammad, Malik, Abdullah, & Ali, Hafiz Muhammad. (2021). Hydro-thermal performance of normal-channel facile heat sink using TiO2-H2O mixture (Rutile–Anatase) nanofluids for microprocessor cooling. Journal of Thermal Analysis and Calorimetry, 145(5), 2487-2502.
    Tarling, Donald H. (2012). Palaeomagnetism: principles and applications in geology, geophysics and archaeology: Springer Science & Business Media.
    Tauxe, Lisa. (2010). Essentials of paleomagnetism: University of California Press.
    Teng, Louis S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
    Tollstrup, Darren L, & Gill, James B. (2005). Hafnium systematics of the Mariana arc: Evidence for sediment melt and residual phases. Geology, 33(9), 737-740.
    Torres-Gómez, Nayely, Nava, Osvaldo, Argueta-Figueroa, Liliana, García-Contreras, René, Baeza-Barrera, Armando, & Vilchis-Nestor, Alfredo R. (2019). Shape tuning of magnetite nanoparticles obtained by hydrothermal synthesis: effect of temperature. Journal of Nanomaterials, 2019.
    Turner, Michael B, Cronin, Shane J, Stewart, Robert B, Bebbington, Mark, & Smith, Ian EM. (2008). Using titanomagnetite textures to elucidate volcanic eruption histories. Geology, 36(1), 31-34.
    Van Oosterhout, GW, & Rooijmans, CJM. (1958). A new superstructure in gamma-ferric oxide. Nature, 181(4601), 44-44.
    Ventura, Guido, De Rosa, Rosanna, Colletta, Elena, & Mazzuoli, Roberto. (1996). Deformation patterns in a high-viscosity lava flow inferred from the crystal preferred orientation and imbrication structures: an example from Salina (Aeolian Islands, southern Tyrrhenian Sea, Italy). Bulletin of Volcanology, 57(7), 555-562.
    Vine, Fred J. (1966). Spreading of the ocean floor: new evidence. Science, 154(3755), 1405-1415.
    Vine, Frederick John, & Matthews, Drummond Hoyle. (1963). Magnetic anomalies over oceanic ridges. Nature, 199(4897), 947-949.
    Vine, Fred J, & Wilson, J Tuzo. (1965). Magnetic anomalies over a young oceanic ridge off Vancouver Island. Science, 150(3695), 485-489.
    Wang, Yunshuen, & Chung, San-Hsiung. (1990). A preliminary mineralogical study of the Lutao andesites. Special Publication of the Central Geological Survey, 5, 77-91.
    Watkins, ND, & Paster, TP. (1971). The magnetic properties of igneous rocks from the ocean floor. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 268(1192), 507-550.
    Waychunas, GA, & Lindsley, DH. (1991). Oxide Minerals: Petrologic and magnetic significance. Reviews in Mineralogy, 25, 38-46.
    Woodhead, JD, Hergt, JM, Davidson, JP, & Eggins, SM. (2001). Hafnium isotope evidence for ‘conservative’element mobility during subduction zone processes. Earth and Planetary Science Letters, 192(3), 331-346.
    Yang, Tsanyao F, Lee, Typhoon, Chen, Cheng-Hong, Cheng, Shih-Nan, Knittel, Ulrich, Punongbayan, Raymundo S, & Rasdas, Ariel R. (1996). A double island arc between Taiwan and Luzon: consequence of ridge subduction. Tectonophysics, 258(1-4), 85-101.
    Yang, Tsanyao F, Tien, Jung-li, Chen, Cheng-Hong, Lee, Typhoon, & Punongbayan, Raymundo S. (1995). Fission-track dating of volcanics in the northern part of the Taiwan-Luzon Arc: Eruption ages and evidence for crustal contamination. Journal of Southeast Asian Earth Sciences, 11(2), 81-93.
    Yazdani, Farshad, & Seddigh, Mahdieh. (2016). Magnetite nanoparticles synthesized by co-precipitation method: The effects of various iron anions on specifications. Materials Chemistry and Physics, 184, 318-323.
    Yumul Jr, Graciano P, Dimalanta, Carla B, Tamayo Jr, Rodolfo A, & Bellon, Herve. (2003). Silicic arc volcanism in Central Luzon, the Philippines: Characterization of its space, time and geochemical relationship. Island Arc, 12(2), 207-218.
    Zellmer, Georg F, Edmonds, Marie, & Straub, Susanne M. (2015). The role of volatiles in the genesis, evolution and eruption of arc magmas.
    Zheng, Shuang, Huang, Chengxi, Yu, Tong, Xu, Meiling, Zhang, Shoutao, Xu, Haiyang, . . . Yang, Guochun. (2019). High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. The journal of physical chemistry letters, 10(11), 2733-2738.

    無法下載圖示 校內:2027-02-07公開
    校外:2027-02-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE