簡易檢索 / 詳目顯示

研究生: 白康銳
Krissabel Anggriawan Putri Kamila
論文名稱: 利用微振動評估屏東地區土壤特性與地震場址效應之研究
Microtremor-Based Assessment of Soil Characteristics and Seismic Site Effects in Pingtung, Taiwan
指導教授: 吳建宏
Wu, Jian-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 179
中文關鍵詞: 微振動地面脆弱性指數地震場址效應土壤液化地震風險圖非破壞性土木技術方法水平至垂直頻譜比屏東台灣
外文關鍵詞: Microtremor, Ground Vulnerability Index, Seismic Site Effects, Soil Liquefaction, Seismic Risk Map, Non-destructive Geotechnical Methods, Horizontal-to-Vertical Spectral Ratio, Pingtung, Taiwan
相關次數: 點閱:39下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文全面研究了利用微動技術評估台灣屏東地區的土壤特性和地震場址效應。屏東縣由於地質結構主要由軟質沖積層和多樣的土壤類型組成,因此極易受到地震活動的影響。傳統的破壞性土壤檢測方法,如標準貫入試驗(SPT)、圓錐貫入試驗(CPT)及鑽孔,雖然常用於評估土壤特性,但這些方法在人口密集的城市地區存在挑戰,因其侵入性大,促使人們需求非破壞性微動方法。

    微動方法,如水平至垂直頻譜比技術,相較於標準貫入試驗(SPT)和圓錐貫入試驗(CPT)等傳統地質技術方法具有多個優勢,包括非破壞性、成本效益高、快速高效、提供動態土壤特性及適用於多種環境。

    在研究的第一部分,通過微動測量獲得了該地點的水平至垂直頻譜比(H/V)p。隨後,我們使用公式?=??/4?轉換了(H/V)p,以獲得(H/V)p深度剖面。然後,我們評估了(H/V)p與SPT-N值之間的關係。論文展示了地面脆弱性潛力的地圖,整合K_g結果以識別地震引發損害的高風險區域。接著,我們使用NCEER方法確定了土層的液化潛能指數(LPI)。最後,根據(H/V)p值,我們建立了一個指數(F)_A來評估土壤液化潛能。

    研究結果驗證了微動分析用於描繪地方性放大效應和地震脆弱性的適用性,為改進區域地震危害模型和提高抗災能力策略提供了關鍵數據。本研究強調了在發展堅固的地震風險緩解策略中,精確評估土壤特性和地震場址效應的重要性。

    This thesis presents a comprehensive study on the assessment of soil characteristics and seismic site effects in Pingtung, Taiwan, using microtremor-based techniques. Pingtung County is highly susceptible to seismic activities due to its geological composition, which predominantly consists of soft alluvial deposits with varied soil types. Traditional destructive geotechnical methods, such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), and borehole drilling, are commonly used to assess soil properties. However, these methods pose challenges in densely populated urban areas due to their invasive nature, prompting the need for non-destructive microtremor methodologies.
    Microtremor methods, such as the Horizontal-to-Vertical Spectral Ratio technique, offer several advantages over traditional geotechnical methods like the Standard Penetration Test (SPT) and Cone Penetration Test (CPT). These advantages include non-destructiveness, cost-effectiveness, speed and efficiency, provision of dynamic soil properties, and applicability in diverse environments.
    In the first part of the study, obtained the (H/V)p of the site through microtremor measurements. Then, we transformed the (H/V)p using the equation ?=??/4? to obtain the (H/V)p-depth profile. Then evaluated the relationship between (H/V)p and the SPT-N value. This thesis present maps of ground vulnerability potential, integrating Kg results to identify high-risk areas for seismic-induced damage. Subsequently, we used the NCEER method to determine the liquefaction potential index (LPI) of the soil layers. Finally, based on the (H/V)p values, we established an index (F)_A to assess the soil liquefaction potential.
    The findings validate the application of microtremor analysis for delineating local amplification effects and seismic vulnerabilities, offering crucial data for improving regional seismic hazard models and resilience strategies. This study underscores the importance of precise assessments of soil properties and seismic site effects in developing robust seismic risk mitigation strategies.

    Abstract i Acknowledgement viii Table of Contents ix Table of Figures xii Table of Table xvii CHAPTER I 1 1.1. Background 1 1.2. Research Motivation 2 1.3. Research Objectives 3 1.4. Research Process 4 CHAPTER II 6 2.1. Microtremors 6 2.1.1. Applicability of Microtremors in Assessing Site Effects 6 2.1.2. Microtremor Analysis Methods 7 2.1.3. Relationship between Microtremor Signal and Geotechnical Properties 11 2.1.4. Feasibility of the Conversion Formula F=Vs/4H 14 2.1.5. Relationship between (H/V)p and SPT-N 16 2.2. Ground Vulnerability Index (Kg) 17 2.1.1. Significance of Kg in Seismic Assessments 20 2.1.2. Multidisciplinary Applications of Kg 21 2.3. Soil Liquefaction Assessment 22 2.3.1. Simplified Assessment Methods 27 2.3.2. Comparison of Soil Liquefaction Assessment Methods 30 2.3.3. NCEER Method (2001) 34 2.3.4. Iwasaki's Liquefaction Potential Index (LPI) 39 2.4. (H/V)p Correlation with Soil Liquefaction 40 2.4.1. Relationship Between (H/V)p Curves and cscθ Curves 40 2.4.2. Interpreting Soil Liquefaction Using (H/V)p - Depth Charts 43 2.5. Geographic Information System 46 2.5.1. Inverse Distance Weighting (IDW): A Popular Interpolation Method in GIS 46 2.5.2. Triangulated Irregular Network (TIN): Modeling Complex Terrains 47 2.5.3. Kriging: A Geostatistical Approach to Interpolation 47 CHAPTER III 51 3.1. Site Location 51 3.2. Topography of Pingtung County 52 3.3. Geological Characteristics 54 3.4. Earthquake Record History in Pingtung County 61 CHAPTER IV 62 4.1. Microtremor Measurement and Analysis 62 4.1.1. Instrumentation 64 4.1.2. The Field Microtremor Measurement Procedures 65 4.1.3. Data processing 66 4.2. Data Interpretation 72 4.3. Soil Liquefaction Assessment Process and Parameter Settings 75 4.3.1. Evaluation Process 75 4.3.2. SPT Parameter Settings 77 4.4. Risk Mapping 79 4.4.1. Methodology and Interpolation Techniques 81 4.4.2. Application in ArcGIS and Spatial Analysis 82 CHAPTER V 84 5.1. Relationship between (H/V)p and Seismograph Stations 84 5.2. (H/V)p Diagram to Estimate Foundation Depth 88 5.3. Relationship between (H/V)p and SPT-N 91 5.4. Distribution of Predominant Frequencies Values 94 5.5. Ground Vulnerability Potential Mapping 104 5.6. Soil Liquefaction Interpretation using (H/V)p Depth Charts 107 CHAPTER VI 115 6.1. Conclusions 115 6.2. Recommendations 116 References 117 Appendix A 127 Appendix B 130 Appendix C 133 Appendix D 138 Appendix E 141 Appendix F 160

    [1] Aki, K. (1957). Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors. Bulletin of the Earthquake Research Institute, University of Tokyo, 35, 415-457.
    [2] Akin, M.K., Kramer, S.L., & Topal, T. (2011). Empirical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey). Engineering Geology, 119(1), 1-17.
    [3] Anderson, S. A., & Roberts, K. J. (2017). Soil liquefaction susceptibility: Factors and assessment. Journal of Geotechnical and Geoenvironmental Engineering, 143(10), 04017089.
    [4] Anderson, T., & Garcia, L. (2021). Using GIS for Disaster Risk Reduction and Urban Planning. Urban Planning and Development Journal, 47(2), 156-172.
    [5] Ansary, M.A., Helaly, A.L., Hassan, M., Kabir, M.A., Khair, A., Bhuiya, M.M.R., Saha, S., & Helaly, S.A. (2020). Assessment of seismic vulnerability index of gas network area in Dhaka city using microtremor measurements. In Proceedings of the 17th World Conference on Earthquake Engineering, Sendai, Japan.
    [6] Arai, H., & Tokimatsu, K. (2004). S-Wave Velocity Profiling by Inversion of Microtremor H/V Spectrum. Bulletin of the Seismological Society of America, 94(1), 53–63.
    [7] Aravindan, S., Shankar, K., & Venkateswaran, S. (2010). Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science.
    [8] Bard, P.Y. (1999). Microtremor Measurements: A Tool for Site Effect Estimation? Proceedings of the Second International Symposium on the Effects of Surface Geology on Seismic Motion, Yokohama, Japan, 1, 1251-1279.
    [9] Brown, C., & Green, D. (2021). Fourier Spectra Analysis in Seismology. Journal of Geophysical Research, 126(7), 789-804.
    [10] Brown, L.T., Diehl, J.G., & Nigbor, R.L. (2000). A Simplified Procedure to Measure Average Shear-Wave Velocity to a Depth of 30 Meters (Vs30). Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
    [11] Central Geological Survey, Ministry of Economic Affairs, Soil Liquefaction Potential Query System. Retrieved from https://www.liquid.net.tw/cgs/Web/Map.aspx (in Chinese) (in Chinese)
    [12] Central Weather Administration (CWA). (2024). Hengchun Earthquake Report. Retrieved from https://scweb.cwa.gov.tw/
    [13] Chatelain, J.L., Guillier, B., Cara, F., Duval, A.M., Atakan, K., Bard, P.Y., & WP02 SESAME team. (2008). Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bulletin of Earthquake Engineering, 6(1), 33–74.
    [14] Chen, C.T., & Wang, J.H. (2020). Seismic Hazard Analysis in Taiwan. Journal of Asian Earth Sciences, 200, 104458.
    [15] Chen, C.T., Kuo, C.H., Lin, C.M., & Wen, K.L. (2022). Investigation of shallow S-wave velocity structure and site response parameters in Taiwan by using high-density microtremor measurements. Engineering Geology, 297, 106498.
    [16] Chen, K.C., et al. (2008). Seismic Hazard Analysis for Pingtung County. Taiwan Seismological Journal, 52(1), 25-38.
    [17] Chen, W. F., & Wang, X. L. (2020). The seismic behavior of foundation systems. CRC Press.
    [18] Chen, W. Y., & Liu, S. H. (2011). Quaternary alluvial deposits and liquefaction potential in the coastal plains of Pingtung County. Journal of Asian Earth Sciences, 56(2), 123-136.
    [19] Chen, Y., & Wang, X. (2018). Site Characterization and Microtremor Analysis in Pingtung County. Geophysical Research Letters, 45(10), 500-515.
    [20] Chiles, J.-P., & Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty. Wiley.
    [21] Chi, S.Z. (2009a). Xinhua Hill (Taiwan Encyclopedia). National Cultural Database, Ministry of Culture, Executive Yuan. Retrieved from https://nrch.culture.tw/twpedia.aspx?id=1420 (2023). (in Chinese)
    [22] Chi, S.Z. (2009b). Chiayi Hill (Taiwan Encyclopedia). National Cultural Database, Ministry of Culture, Executive Yuan. Retrieved from https://nrch.culture.tw/twpedia.aspx?id=1419 (2023). (in Chinese)
    [23] Cho, I., & Tada, T. (2010). BIDO 2.0 Data Processing Framework. University of Tokyo, Shinozaki Laboratory.
    [24] Dobry, R., Borcherdt, R. D., Crouse, C. B., Idriss, I. M., Joyner, W. B., Martin, G. R., Power, M. S., Robertson, P. K., & Seed, R. B. (1982). Predictions of Earthquake Ground Motions Using Empirical Data. Earthquake Engineering Research Institute.
    [25] Doe, J., & Roe, M. (2022). Microtremor Analysis and Urban Earthquake Preparedness. Seismological Research Letters, 93(4), 567-589.
    [26] Earthquake Monitoring Center, Central Weather Bureau. Retrieved from (https://scweb.cwb.gov.tw/) (in Chinese)
    [27] Engineering Geology Exploration Data Integration Platform, Central Geological Survey, Ministry of Economic Affairs. Retrieved from https://geotech.moeacgs.gov.tw/imoeagis/Home/Map (2022, 2023). (in Chinese)
    [28] ESRI. (n.d.). Kriging vs. IDW: Differences between the interpolation techniques. Retrieved from ESRI website.
    [29] ESRI. (n.d.). Variogram basics.
    [30] Field, E.H., & Jacob, K.H. (1993). Theoretical and Observed Relations between (H/V)P and SPT-N Values in Sediments. Bulletin of the Seismological Society of America, 83(4), 1095-1114.
    [31] Gaudio, C.D., Wasowski, J., & Muscillo, S. (2013). New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes. Natural Hazards and Earth System Sciences, 13(8), 2075-2087.
    [32] Gaudio, C.D., et al. (2013). Correlation of SPT and (H/V)P in Liquefaction Studies. Journal of Geotechnical and Geoenvironmental Engineering, 139(12), 2168-2180.
    [33] GISGeography. (2020). Inverse Distance Weighting (IDW) Interpolation.
    [34] Hakusan Corporation. (2015). DATAMARK JU410 Specifications. Hakusan Corporation.
    [35] Hazen, A. (1920). Hydraulic fill dams. Transactions, American Society of Civil Engineers, 83, 1713-1745.
    [36] Ho, C. S., & Chou, H. C. (2010). Geological structures and tectonics of Taiwan. Geological Survey of Taiwan, 39(3), 231-245.
    [37] Hossain, M.A., et al. (2014). The (H/V) (Nakamura) Method for Ground Motion Assessment. Geophysical Journal International, 198(1), 95-105.
    [38] Housner, G.W. (1952). Spectrum Intensities of Strong-Motion Earthquakes. Retrieved April 16 from: http://egdt.ncree.org.tw/news.htm
    [39] Hsu, T. C., & Chou, H. Y. (2019). The geology of the central rolling hills of Pingtung County. Journal of Asian Earth Sciences, 178, 115-129.
    [40] Huang, B. S., & Lin, C. M. (2016). Seismic site effects evaluated by the H/V spectral ratio method. Journal of Asian Earth Sciences, 120, 137-148.
    [41] Huang, C. Y., & Wang, L. C. (2016). Tectonic evolution of Taiwan and its geological implications. Geological Society of Taiwan, 45(1), 12-25.
    [42] Huang, H.C., & Teng, T.L. (1999). An Evaluation on H/V Ratio vs. Spectral Ratio for Site-response Estimation Using the 1994 Northridge Earthquake Sequences. Pure and Applied Geophysics, 156, 631–649.
    [43] Huang, M.W., & Lin, C.H. (2016). Validation of Microtremor Methods in Urban Seismic Risk Assessment. Journal of Asian Earth Sciences, 117, 53-64.
    [44] Hydrogeological Data Integration Query Platform, National Land Surveying and Mapping Center, Ministry of the Interior. Retrieved from https://hydrogis.moeacgs.gov.tw/map/zh-tw (2022, 2023). (in Chinese)
    [45] Ibs-von Seht, M., & Wohlenberg, J. (1999). Microtremor Measurements Used to Map Thickness of Soft Sediments. Bulletin of the Seismological Society of America, 89(1), 250-259.
    [46] Ishihara, K., & Koga, Y. (1981). Case studies of liquefaction in the 1964 Niigata earthquake. Soils and Foundations, 21(3), 35-52.
    [47] Iwasaki, T., Arakawa, T., & Tokida, K. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49-58.
    [48] J-SESAME. (2004). J-SESAME User Manual Version 1.08. Retrieved May 7 from: https://www.geo.uib.no/seismo/SOFTWARE/SESAME/USER-MANUAL/J-SESAME-User-Manual-Ver1-08.pdf
    [49] Johnson, L., & White, P. (2019). Stability and Reliability of H/V Spectral Ratio for Seismic Risk Assessment. Seismic Safety Journal, 48(5), 221-235.
    [50] Johnson, M., & Park, D. (2018). Data consistency and gain settings in seismic measurement studies. Seismological Research Letters, 89(4), 1297-1304.
    [51] Johnson, R. A., & Wichern, D. W. (2014). Applied Multivariate Statistical Analysis (6th ed.). Pearson Education.
    [52] Johnson, R. E., & Patel, P. M. (2016). Impact of liquefaction on structural integrity in high water table regions. Earthquake Engineering and Structural Dynamics, 45(2), 243-260.
    [53] Kavazanjian, E., Andrade, J.E., Arulmoli, K., Atwater, B., Christian, J., Green, R., Kramer, S., Mejia, L.H., Mitchell, J.K., Rathje, E., Rice, J.R., & Wang, Y. (2016). State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences. The National Academies Press, Washington, United States.
    [54] Kiyono, J., Ono, Y., Sato, A., Noguchi, T., & Putra, R.R. (2011). Estimation of subsurface structure based on microtremor observations at Padang, Indonesia. ASEAN Engineering Journal, Part C, 1(3), 66-81.
    [55] Ko, Y.-Y. (2022). Signal Processing in Geotechnical Engineering. Tainan: National Cheng Kung University.
    [56] Kramer, S.L. (1996). Geotechnical Earthquake Engineering. Prentice Hall, New Jersey.
    [57] Kuo, Z.Y. (2022). Study on Site Effects and Soil Characteristics Using Surface Microtremor in Tainan and Kaohsiung Areas. Master's Thesis, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan. (in Chinese)
    [58] Kyaw, T.T., et al. (2015). Application of Microtremor Survey Method in Yogyakarta, Indonesia. Earthquake Engineering and Structural Dynamics, 44(2), 251-266.
    [59] Kyaw, Z.L., Pramumijoyo, S., Husein, S., Fathani, T.F., & Kiyono, J. (2014). Investigation to the local site effects during earthquake-induced ground deformation using microtremor observation in Yogyakarta, Central Java-Indonesia. Landslide Science for a Safer Geoenvironmental, 3, 241-249.
    [60] Kyaw, Z.L., Pramumijoyo, S., Husein, S., Fathani, T.F., & Kiyono, J. (2015). Seismic Behaviors Estimation of the Shallow and Deep Soil Layers Using Microtremor Recording and EGF Technique in Yogyakarta City, Central Java Island. Procedia Earth and Planetary Science, 12, 31-46.
    [61] Kyaw, Z.L., Pramumijoyo, S., Husein, S., Fathani, T.F., Kiyono, J., & Putra, R.R. (2014). Estimation of Subsurface Soil Layers using H/V Spectrum of Densely Measured Microtremor Observations (Case Study: Yogyakarta City, Central Java-Indonesia). International Journal of Sustainable Future for Human Security, 2(1), 13-20.
    [62] Land Subsidence Prevention Information Network, NCKU Hydraulics Laboratory Team. Retrieved from http://www.lsprc.ncku.edu.tw/zh-tw (2023) (in Chinese)
    [63] Lin, C. H., & Chen, W. J. (2015). Sedimentary and volcanic formations of Pingtung County. Earth Science Journal of Taiwan, 34(2), 123-135. (in Chinese)
    [64] Lee, C.T., & Tsai, B.R. (2008). Mapping Vs30 in Taiwan. Terr. Atmos. Ocean. Sci., 19(6), 671-682. (in Chinese)
    [65] Lee, D.H., & Hsu, C. (1988). Geological Overview of Tainan Metropolitan Area. Journal of Geotechnical Engineering, 22, 40-55. (in Chinese)
    [66] Lee, H., & Kim, S. (2020). Quantifying Soil Susceptibility with the Ground Vulnerability Index. Geotechnical Engineering Journal, 59(4), 389-405. (in Chinese)
    [67] Lee, J. C., & Teng, L. S. (2008). Tectonic framework and plate collision in Taiwan. Tectonophysics, 446(1-4), 93-110. . (in Chinese)
    [68] Lee, Y. L., & Wang, C. H. (2017). Seismic wave amplification and predominant frequencies in Pingtung County’s rolling hills. Geophysical Journal International, 211(2), 872-884. (in Chinese)
    [69] Lermo, J., & Chavez-Garcia, F.J. (1993). Site Effect Evaluation Using Spectral Ratios with Only Microtremor Data. Bulletin of the Seismological Society of America, 83(5), 1574-1594.
    [70] Lin, C.-C. (1971). Quaternary Geology of the Tainan Area – Heavy Mineral Exploration Report of the Tainan Plain (in Chinese). Joint Mining Research Institute, Ministry of Economic Affairs Report, No. 112, pp. 30-65. (in Chinese)
    [71] Lin, C. H., & Chen, W. J. (2015). Sedimentary and volcanic formations of Pingtung County. Earth Science Journal of Taiwan, 34(2), 123-135. (in Chinese)
    [72] Lin, C., & Stein, R.S. (2004). Seismic Hazard in Taiwan. Science, 305, 1111-1113.
    [73] Lin, C. W., & Wang, H. W. (2013). Seismic wave amplification in Pingtung County’s Quaternary sediments. Journal of Earthquake Engineering, 17(2), 329-349. (in Chinese)
    [74] Lin, M.L., & Chen, W.S. (2018). Amplification of Seismic Waves in Soft Soil Areas. Earthquake Engineering and Structural Dynamics, 47(2), 289-305.
    [75] Lin, Y.H. (2023). Study on Investigating the Strength and Liquefaction Potential of Subsurface Soil Layers through Microtremor and Evaluating the Shear Wave Velocity of the Ground, National Cheng Kung University, Tainan, Taiwan. (in Chinese)
    [76] Liu, P.H., Wu, J.H., Lee, D.H., & Lin, Y.H. (2023). Detecting landslide vulnerability using anisotropic microtremors and vulnerability index. Engineering Geology, 323, 107240.
    [77] Lu, G.Y., & Wong, D.W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34(9), 1044-1055.
    [78] Mayne, P. W. (2001). Stress-strain-strength-flow parameters from enhanced in-situ tests. In International Conference on In-Situ Measurement of Soil Properties & Case Histories (In-Situ 2001) (pp. 27-48).
    [79] Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (3rd ed.). John Wiley & Sons.
    [80] MMA Consultant Engineering. (2023). Geological Structure Map of Pingtung County. Commissioned by Pingtung County Government. (in Chinese)
    [81] Mokhberi, M., Davoodi, M., Haghshenas, E., & Jafari, M.K. (2013). Experimental Evaluation of the H/V Spectral Ratio Capabilities in Estimating the Subsurface Layer Characteristics. IJST, Transactions of Civil Engineering, 37(C+), 457-468.
    [82] Moon, J.W., et al. (2019). Empirical Correlation between Natural Frequency and Bedrock Depth. Journal of Geotechnical and Geoenvironmental Engineering, 145(2), 04018108.
    [83] Mucciarelli, M., & Gallipoli, M.R. (2001). Simple Methodology for Seismic Microzonation Using H/V Ratio and PGA Conversion. Journal of Earthquake Engineering, 5(3), 369-389.
    [84] Mucciarelli, M., et al. (2011). Assessment of Seismic Site Effects Using Microtremor Measurements. Soil Dynamics and Earthquake Engineering, 31(3), 320-328.
    [85] Nakamura, Y. (1989). A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface. Railway Technical Research Institute, Quarterly Reports, 30(1), 25-33.
    [86] Nakamura, Y. (1996). Simple Estimation of Dynamic Characteristics of Subsurface Using Microtremor. Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, Paper No. 1280.
    [87] Nakamura, Y. (1997). Seismic Vulnerability Indices for Ground and Structures Using Microtremor. World Congress on Railway Research, Florence, Italy.
    [88] National Center for Research on Earthquake Engineering (2019). Chapter 11: Other Earthquake-Resistant Regulations: Soil Liquefaction Revisions. Retrieved from https://www.ncree.org/Download/CodeWorking/3.%E5%9C%9F%E5%A3%A4%E6%B6%B2%E5%8C%96%E7%9B%B8%E9%97%9C%E6%A2%9D%E6%96%87%E4%BF%AE%E8%A8%82.pdf (in Chinese)
    [89] National Strong Motion Station Site Engineering Geological Database (EGDT). Retrieved from https://egdt.ncree.org.tw/DataList.htm (2022, 2023). (in Chinese)
    [90] Nogoshi, M., & Igarashi, T. (1971). On the amplitude characteristics of microtremor (Part 2). Journal of the Seismological Society of Japan, 24, 26-40.
    [91] Okada, H. (2003). The Microtremor Survey Method. Society of Exploration Geophysicists, Tulsa, OK.
    [92] Okada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H., & Yamamoto, A. (2004). Recent progress of seismic observation networks in Japan—Hi-net, F-net, K-NET and KiK-net. Earth, Planets and Space, 56, xv–xxviii.
    [93] Parolai, S., et al. (2005). The Use of Microtremor H/V Spectral Ratios to Evaluate Site Effects in Urban Areas: A Case Study in Cologne, Germany. Bulletin of the Seismological Society of America, 95(1), 54-63.
    [94] Pini, G. (2018). Fundamentals of RMS in signal processing. Signal Processing Journal.
    [95] Pingtung County Government. (2022). 109年度屏東縣土壤液化潛勢區防治改善委託技術服務地質鑽探報告書 [Geological Drilling Report on Soil Liquefaction Potential Zones in Pingtung County]. Pingtung County Government. (in Chinese)
    [96] Robertson, P. K., & Wride, C. E. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), 442-459.
    [97] Seed, H. B., Idriss, I. M., & Arango, I. (1985). Evaluation of liquefaction potential using field performance data. Journal of Geotechnical Engineering, 111(12), 1425-1445.
    [98] Seed, H.B., & Idriss, I.M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundations Division, 97(9), 1249-1273.
    [99] SESAME Project (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation. SESAME European Research Project.
    [100] Smith, A., & Jones, B. (2023). Vibrational Characteristics in Engineering Applications. Engineering Journal, 45(2), 123-134.
    [101] Smith, J., & Lee, H. (2018). Geotechnical Evaluation for Earthquake Risk Mitigation. Journal of Earthquake Engineering, 32(5), 123-134.
    [102] Soil Liquefaction Potential Query System - Origin, Central Geological Survey, Ministry of Economic Affairs. Retrieved from https://www.liquid.net.tw/cgs/public/story01.html (in Chinese)
    [103] Subedi, B., Kiyono, J., Furukawa, A., Ono, Y., Ornthammarath, T., Kitaoka, T., Charatpangoon, B., & Latcharote, P. (2021). Estimation of Ground Profiles Based on Microtremor Survey in the Bangkok Basin. Earthquake Engineering, 7, 64-79.
    [104] Tada, T., Shinozaki, Y., & Yamanaka, H. (2007). Spatial auto-correlation method for phase velocity spectrum estimation using ambient noise (Version 1.0). University of Tokyo, Shinozaki Laboratory.
    [105] Tada, T., Shinozaki, Y., & Yamanaka, H. (2010). BIDO 2.0: A versatile tool for seismic noise analysis (Version 2.0). University of Tokyo, Shinozaki Laboratory.
    [106] Tada, T., Cho, I., & Shinozaki, Y. (2007). Beyond the SPAC Method: Exploiting the Wealth of Circular-Array Methods for Microtremor Exploration. Bulletin of the Seismological Society of America, 97(6), 2080–2095.Tarantola, A. (1987). Inversion of travel times and seismic waveforms. Seismic Tomography, 5, 135–157.
    [107] Terzaghi, K. (1925). Principles of Soil Mechanics. IV. Settlement and Consolidation of Clay. Engineering News‐Record, 95, 874.
    [108] Tokeshi, J.C., Karkee, M.B., & Sugimura, Y. (2006). Reliability of Rayleigh wave dispersion curve obtained from f–k spectral analysis of microtremor array measurement. Soil Dynamics and Earthquake Engineering, 26(2), 163-174.
    [109] Tokimatsu, K., & Yoshimi, Y. (1983). Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content. Soils and Foundations, 23(4), 56-74.
    [110] Wang, F., Okeke, A.C.U., Kogure, T., Sakai, T., & Hayashi, H. (2018). Assessing the internal structure of landslide dams subject to possible piping erosion by means of microtremor chain array and self-potential surveys. Engineering Geology, 234, 11-26.
    [111] Wang, J. Y., & Lee, C. S. (2018). Agricultural development and flood risks in the coastal plains of Pingtung County. Journal of Agricultural Economics, 67(4), 322-334.
    [112] Wang, S. C., & Ho, Y. M. (2017). Seismic hazards and mitigation strategies in Taiwan’s mountainous regions. Journal of Earthquake Engineering, 21(5), 745-761.
    [113] Wang, Y. T., & Liu, Y. P. (2016). Flooding in Taiwan’s coastal plains: Causes and mitigation strategies. Water Resources Research, 52(3), 1761-1772.
    [114] Wikipedia. (2012). Pingtung County geography. Retrieved from https://en.wikipedia.org/wiki/Pingtung_County
    [115] Xu, P., Ling, S., Li, C., Du, J., Zhang, D., Xu, X., Dai, K., & Zhang, Z. (2012). Mapping deeply buried geothermal faults using microtremor array analysis. Geophysical Journal International, 188(1), 115–122. (in Chinese)
    [116] Yang, M. C., & Yeh, T. L. (2015). Topographical mapping and elevation zones of Pingtung County. Journal of Geographical Sciences, 49(3), 88-101.
    [117] Youd, T.L., & Idriss, I.M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297-313.
    [118] Zhang, G., Robertson, P.K., & Brachman, R.W.I. (2002). Estimating liquefaction-induced ground settlements from CPT for level ground. Canadian Geotechnical Journal, 39(5), 1168-1180.
    [119] Zhuang, D.L. (2021). Study on Site Effects and Soil Liquefaction Potential in Tainan and North Kaohsiung Areas Using Surface Microtremor. Master's Thesis, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan. (in Chinese)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE