簡易檢索 / 詳目顯示

研究生: 高詠晟
Kao, Yong-Cheng
論文名稱: 以酵母菌雙雜交系統鑑定與 BIG1 相互作用的蛋白質
Identification of BIG1-interacting proteins by yeast two-hybrid assays
指導教授: 李純純
Li, Chun-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: 鳥糞嘌呤核苷酸交換因子1微管相聯蛋白1B微管
外文關鍵詞: BIG1, MAP1B, microtubule
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小分子鳥糞嘌呤核苷酸結合蛋白質 (small GTPase) 腺嘌呤核苷二磷酸核
    糖化因子 (ADP-ribosylation factors; Arfs)是一個約 20-kDa 的蛋白質,Arf 主要負責調控並參與胞內囊泡運輸的路徑,Arf 如同 Small GTPase 能夠被他們的調控蛋白質鳥糞嘌呤核苷酸交換因子 (guanine nucleotide-exchange factors, GEF)上的 Sec7 功能域催活,使得失活態的 Arf (結合 GDP)轉換為活化態的 Arf (轉為結合 GTP)。鳥糞嘌呤核苷酸交換因子 BIG1 和 BIG2 (brefeldin A-inhibited
    guanine nucleotide-exchange factors, BIG),最初是在小牛腦組織內約 670 kDa 的蛋白質複合物中被發現的,在 BIG1 和 BIG2 主要負責催活 Arf 的 Sec7 功能域上有著高達 90%的 identity,除了 Sec7 功能域外,其他幾個在 N 端及 C 端的保守功能域的功能都鮮為人知。因此,我們透過酵母菌雙雜交系統,並利用BIG1NSec7 (a.a. 1-885,包含 Sec7 domain) and BIG1C (a.a. 886-1849)當作誘餌蛋白質與人類胚胎大腦 cDNA 庫進行交互作用的篩選。本實驗發現了多個候選蛋白質,包括了微管相聯蛋白質 1B ( microtubule-associated protein 1B, MAP1B)的輕鏈(light chain 1, LC1)與 α-tubulin 等和微管組成相關的蛋白質;進一步利用酵母菌雜交研究出 MAP1B-LC1、α-tubulin 與 BIG1 交互作用的胺基酸序列,MAP1B-LC1與BIG1的Sec7功能域有專一性的交互作用,而α-tubulin與BIG1N端片段有交互作用,與 Sec7 域則無。微管結構的組成中,α-tubulin 便是其主要的聚合物之一,而 MAP1B 也多次被研究發現與微管的發展、穩定相關,並在神經細胞的軸突發育延伸、神經細胞遷移扮演重要角色。我們希望能透過這些新的交互作用的發現,在未來能更加明白 BIG1 如何調控廣範圍、長距離的胞內運輸等生理機制。

    ADP-ribosylation factors (Arfs) are a family of 20-kDa guanine nucleotide-binding proteins which are involved in regulation of several pathways of intracellular trafficking.
    Similar with other small GTPase, activation of Arfs is catalyzed by the Sec7 domain of Arf guanine nucleotide exchange factors (GEFs), which can catalyze the replacement of Arf-bound GDP by GTP. Two brefeldin A (BFA)-inhibited guanine nucleotide-exchange proteins, BIG1 (~200-kDa) and BIG2 (~190-kDa), were purified together in >670-kDa
    multiprotein complexes from bovine brain cytosol. BIG1 and BIG2 were 90% identical in the ~200-amino-acid Sec7 domains. Besides the catalytic GEF activity of the Sec7 domain,
    there are additional highly conserved sequences in the N and C termini of BIG1 and BIG2 that remain less defined. Here, I used the yeast two-hybrid system which BIG1NSec7 (a.a.
    1-885, contained Sec7 domain) and BIG1C (a.a. 886-1849) as bait to screen interaction with a human fetal brain cDNA library respectively. We identified several candidate
    proteins which related to microtubule assembly, including microtubule-associated protein 1B-light chain 1 (MAP1B-LC1, a.a. 2262-2468) and α-tubulin. Interactive regions of BIG1
    to MAP1B-LC1 and α-tubulin were narrowed down by yeast two-hybrid assay. Sec7 domain (a.a. 698-885) of BIG1 is responsible for interaction with MAP1B-LC1, and α-tubulin interacted with the N-terminal structures, but not Sec7 domain of BIG1. Alpha-tubulin is well known as a major component of microtubules. Function of MAP1B are reported to regulate the polymerization of microtubule and actin microfilaments, and involves in axonal elongation, neuronal migration, and axonal guidance. These newly recognized interactions should let us understand better the mechanisms through which BIG1 may integrate local events in membrane trafficking with longer-range transport processes.

    摘要..................I 致謝...................VI 目錄................. VII 圖目錄..................X 表目錄.................XI 附錄................. XII 縮寫表.................XIII 前言..................1 1.1. 小分子鳥糞嘌呤核苷酸結合蛋白質 (small GTPase)... 1 1.2. 鳥糞嘌呤核苷酸交換因子 (guanine nucleotide exchange factor, GEF)............... 2 1.3. GTP 酶活化蛋白質 (GTPase-activating protein, GAP).. 2 1.4. 腺嘌呤核苷二磷酸核糖化因子 (ADP-ribosylation factors, Arfs).................. 3 1.5. Large Sec7 Arf GEFs 其蛋白質序列結構與功能 ..... 4 1.6. 目前已知與 BIG1 & BIG2 有交互作用的蛋白質及機制.... 5 1.7. 與 BIG1 & BIG2 的相關疾病研究........ 6 1.8. 微管相聯蛋白質 (Microtubule-associated proteins, MAPs).................. 6 1.9. 微管相聯蛋白質 1B (microtubule-associated protein 1B, MAP1B)................. 7 1.10. 目前已知與 MAP1B 有交互作用的蛋白質及其功能..... 8 1.11. 與 MAP1B 的相關疾病研究........... 8 1.12. 研究目的............... 9 貳、材料與方法................10 2.1. 酵母菌雙雜交菌株與質體........... 10 2.2. 酵母菌雙雜交篩選 (Large scale screen)..... 10 2.2.1. 製備酵母菌勝任細胞(yeast competent cells).... 10 2.2.2. 基因庫轉型.............. 10 2.3. 酵母菌 Genomic DNA 萃取 (用於萃取酵母菌內的載體 DNA).11 2.4. 製備大腸桿菌(E. coli strain, DH5α)勝任細胞(competent cells) ................. 12 2.4.1. 電穿孔法勝任細胞............ 12 2.4.2. 化學性轉型勝任細胞........... 12 2.5. 大腸桿菌 (E. coli DH5α) 轉型作用(transformation)... 13 2.5.1 電穿孔法............... 13 2.5.2 化學性轉型(CaCl2)............ 13 2.6. 大腸桿菌 (DH5α)質體 DNA 萃取......... 14 2.6.1. Phenol–chloroform-isoamyl alcohol extraction.. 14 2.6.2. PrestoTM Mini Plasmid Kit (Geneaid)..... 14 2.7. 酵母菌轉型.............. 15 2.8. 酵母菌生長分析(Yeast’s Dot Spot Assay)..... 15 2.9. 限制酶處理(Restriction Enzyme Digestion).... 15 2.10. 質體接合作用 (Ligation)........... 16 2.11. 瓊脂膠體電泳(Agarose Gel Electrophoresis)... 16 2.12. 膠體純化萃取 DNA (Gel extraction, GeneHlow Gel/PCR kit, Geneaid)................. 16 2.13. 酵母菌蛋白質萃取............ 17 2.14. 十二烷基硫酸鈉聚丙烯醯胺凝膠電 (SDS-PAGE, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis).... 17 2.14.1. SDS-PAGE 的製作............ 17 2.14.2. SDS-PAGE 電泳分析............ 17 2.15. 西方墨點分析(Western blot)..........18 2.15.1. 轉漬 (transfer)............ 18 2.15.2. 接抗體............... 18 2.16. 細胞培養............... 19 2.16.1. 細胞繼代............... 19 2.16.2. 細胞計數與保存............ 19 2.16.3. 細胞轉染 (Transfection).......... 20 2.16.4. 萃取細胞蛋白質(cell lysate)......... 20 2.16.5. 蛋白質定量 (Bradford Assay) ....... 20 2.16.6. 免疫螢光染色 (Immunofluorescence staining).... 21 2.16.7. 免疫沉澱 (Immunoprecipitation) ...... 21 2.17. 逆轉錄聚合酶鏈式反應 (Reverse transcription-PCR, RT-PCR).................. 22 2.17.1. 萃取細胞 RNA (RNA spin mini, GE health care)... 22 2.17.2. RNA 逆轉錄 cDNA (High-Capacity cDNA Reverse Transcription Kits, Applied Biosystems)....... 23 2.17.3. 逆轉錄聚合酶鏈式反應.......... 23 2.17.4. PCR 質體接合 ............ 23 參、結果..................25 3.1. 酵母菌雙雜交系統篩選與 BIG1 交互作用的蛋白質..... 25 3.2. 鑑定候選蛋白質與 BIG1 及 BIG2 片段的專一結合功能域... 26 3.3. 鑑定各細胞株內的 MAP1B 的表現情況....... 27 3.4. 免疫共沉澱分析(co-immunoprecipitation, co-IP)鑑定細胞內源性 BIG1 和 MAP1B 的交互作用........... 27 3.5. 以免疫共沉澱分析鑑定 BIG1 與 GFP-MAP1B-LC1 的交互作用..28 3.6. U251 細胞內 BIG1 及 MAP1B 的分布位置....... 28 3.7. 過度表現 MAP1B 對 BIG1、BIG2 蛋白質分子量的影響... 29 3.8. 過度表現 MAP1B-LC1 對細胞內 BIG1 位置的影響 .... 29 肆、討論..................30 4.1. 以酵母菌雙雜交系統篩選與 BIG1 交互作用的蛋白質... 30 4.2. BIG1 及 MAP1B 於細胞內的交互作用....... 31 4.3. 過度表現 MAP1B-LC1 使得 BIG1 於細胞內的分布較為集中...32 4.4. 過度表現 MAP1B 對 BIG1 蛋白質分子量的影響..... 33 4.5. MAP1B 和 BIG1 交互作用於細胞內的可能功能...... 33 4.6. 結論................ 34 伍、參考文獻.................35 圖與圖誌..................44 圖目錄 圖 1:BIG1 及 BIG2 蛋白質結構與本實驗所用之蛋白質片段 ...44 圖 2:B.IG1 和 BIG2 蛋白質片段與 1-1067 (MAP1B aa 2262-2468)進行酵母菌雙雜交...............46 圖 3:BIG1 和 BIG2 蛋白質片段與 1-1269 (DNAJC14 aa 508-702)進行酵母菌雙雜交...............48 圖 4:BIG1 和 BIG2 蛋白質片段與 1-33 (α-tubulin aa 74-124)進行酵母菌雙雜交.................50 圖 5:MAP1B 在不同的細胞株內的表現情況........52 圖 6:細胞內源性 MAP1B 與 BIG1 進行免疫共沉澱分析....53 圖 7:GFP-MAP1B-LC1 與 BIG1 進行免疫共沉澱分析......54 圖 8:內源性 BIG1 及 MAP1B 蛋白質在 U251 細胞株中的分布位置..55 圖 9:BIG1 和 BIG2 的蛋白質分子量不會受到過量 MAP1B 表現的影響....................56 圖 10:過度表現 GFP-MAP1B-LC1 蛋白質觀察 BIG1 在細胞株中的分布情況..................58 表目錄 表一、 BIG1C (aa 886-1849) Yeast two-Hybrid library screening 原始定序序列.............60 表二、 BIG1NSec7 (aa 1-886) Yeast two-Hybrid library screening 原始定序序列.............63 表三、以 BIG1C 或 BIG1NSec7 蛋白質片段進行酵母菌雙雜交篩選之結果....................70 表四、與BIG1交互作用的蛋白質整理..........71 表五、與 MAP1B 交互作用的蛋白質整理.........72 附錄 附錄一、酵母菌菌株...............73 附錄二、酵母菌雙雜交系統所用質體..........74 附錄三、培養基...............77 附錄四、引子序列...............79 附錄五、實驗所需藥劑配製.............79 附錄六、實驗所需藥劑來源.............83 附錄七、大腸桿菌質體克隆及所用載體..........88 附錄八、所用抗體列表.............89

    Allen, E., J. Ding, W. Wang, S. Pramanik, J. Chou, V. Yau, and Y. Yang. 2005.
    Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal
    survival. Nature. 438:224-228.
    Asai, D.J., W.C. Thompson, L. Wilson, C.F. Dresden, H. Schulman, and D.L. Purich. 1985.
    Microtubule-associated proteins (MAPs): a monoclonal antibody to MAP 1
    decorates microtubules in vitro but stains stress fibers and not microtubules in vivo.
    Proceedings of the National Academy of Sciences of the United States of America.
    82:1434-1438.
    Banne, E., O. Atawneh, M. Henneke, K. Brockmann, J. Gartner, O. Elpeleg, and S.
    Edvardson. 2013. West syndrome, microcephaly, grey matter heterotopia and
    hypoplasia of corpus callosum due to a novel ARFGEF2 mutation. Journal of
    Medical Genetics. 50:772-775.
    Bernards, A., and J. Settleman. 2004. GAP control: regulating the regulators of small
    GTPases. Trends in Cell Biology. 14:377-385.
    Bloom, G.S., F.C. Luca, and R.B. Vallee. 1985. Microtubule-associated protein 1B:
    identification of a major component of the neuronal cytoskeleton. Proceedings of
    the National Academy of Sciences of the United States of America. 82:5404-5408.
    Bos, J.L., H. Rehmann, and A. Wittinghofer. 2007. GEFs and GAPs: critical elements in
    the control of small G proteins. Cell. 129:865-877.
    Bouquet, C., S. Soares, Y. von Boxberg, M. Ravaille-Veron, F. Propst, and F. Nothias. 2004.
    Microtubule-associated protein 1B controls directionality of growth cone migration
    and axonal branching in regeneration of adult dorsal root ganglia neurons. Journal
    of Neuroscience. 24:7204-7213.
    Bourne, H.R., D.A. Sanders, and F. McCormick. 1991. The GTPase superfamily:
    conserved structure and molecular mechanism. Nature. 349:117-127.
    Brandizzi, F., and C. Barlowe. 2013. Organization of the ER-Golgi interface for membrane
    traffic control. Nature reviews. Molecular Cell Biology. 14:382-392.
    Brinkley, W. 1997. Microtubules: a brief historical perspective. Journal of Structural
    Biology. 118:84-86.
    Calvert, R., and B.H. Anderton. 1985. A microtubule-associated protein (MAP1) which is
    expressed at elevated levels during development of the rat cerebellum. EMBO
    Journal. 4:1171-1176.
    Chabin-Brion, K., J. Marceiller, F. Perez, C. Settegrana, A. Drechou, G. Durand, and C.
    Pous. 2001. The Golgi complex is a microtubule-organizing organelle. Molecular
    36
    Biology of The Cell. 12:2047-2060.
    Chardin, P., S. Paris, B. Antonny, S. Robineau, S. Beraud-Dufour, C.L. Jackson, and M.
    Chabre. 1996. A human exchange factor for ARF contains Sec7- and
    pleckstrin-homology domains. Nature. 384:481-484.
    Charych, E.I., W. Yu, C.P. Miralles, D.R. Serwanski, X. Li, M. Rubio, and A.L. De Blas.
    2004. The brefeldin A-inhibited GDP/GTP exchange factor 2, a protein involved in
    vesicular trafficking, interacts with the beta subunits of the GABA receptors.
    Journal of Neurochemistry. 90:173-189.
    Cheng, L., J. Desai, C.J. Miranda, J.S. Duncan, W. Qiu, A.A. Nugent, A.L. Kolpak, C.C.
    Wu, E. Drokhlyansky, M.M. Delisle, W.M. Chan, Y. Wei, F. Propst, S.L.
    Reck-Peterson, B. Fritzsch, and E.C. Engle. 2014. Human CFEOM1 mutations
    attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron.
    82:334-349.
    Citterio, C., H.D. Jones, G. Pacheco-Rodriguez, A. Islam, J. Moss, and M. Vaughan. 2006.
    Effect of protein kinase A on accumulation of brefeldin A-inhibited guanine
    nucleotide-exchange protein 1 (BIG1) in HepG2 cell nuclei. Proceedings of the
    National Academy of Sciences of the United States of America. 103:2683-2688.
    Cueille, N., C.T. Blanc, S. Popa-Nita, S. Kasas, S. Catsicas, G. Dietler, and B.M. Riederer.
    2007. Characterization of MAP1B heavy chain interaction with actin. Brain
    Research Bulletin. 71:610-618.
    Danielsson, F., M. Wiking, D. Mahdessian, M. Skogs, H. Ait Blal, M. Hjelmare, C. Stadler,
    M. Uhlen, and E. Lundberg. 2013. RNA deep sequencing as a tool for selection of
    cell lines for systematic subcellular localization of all human proteins. Journal of
    Proteome Research. 12:299-307.
    de Wit, M.C., I.F. de Coo, D.J. Halley, M.H. Lequin, and G.M. Mancini. 2009. Movement
    disorder and neuronal migration disorder due to ARFGEF2 mutation.
    Neurogenetics. 10:333-336.
    Dehring, D.A., A.S. Adler, A. Hosseini, and L. Hicke. 2008. A C-terminal sequence in the
    guanine nucleotide exchange factor Sec7 mediates Golgi association and
    interaction with the Rsp5 ubiquitin ligase. Journal of Biological chemistry.
    283:34188-34196.
    Donovan, S., K.M. Shannon, and G. Bollag. 2002. GTPase activating proteins: critical
    regulators of intracellular signaling. Biochimica et Biophysica acta. 1602:23-45.
    Fields, S., and O. Song. 1989. A novel genetic system to detect protein-protein interactions.
    Nature. 340:245-246.
    Gandini, M.A., D.R. Henriquez, L. Grimaldo, A. Sandoval, C. Altier, G.W. Zamponi, R.
    Felix, and C. Gonzalez-Billault. 2014. CaV2.2 channel cell surface expression is
    37
    regulated by the light chain 1 (LC1) of the microtubule-associated protein B
    (MAP1B) via UBE2L3-mediated ubiquitination and degradation. European
    Journal of Physiology. 466:2113-2126.
    Gomez-Manzano, C., J. Fueyo, A.P. Kyritsis, T.J. McDonnell, P.A. Steck, V.A. Levin, and
    W.K. Yung. 1997. Characterization of p53 and p21 functional interactions in glioma
    cells en route to apoptosis. Journal of the National Cancer Institute. 89:1036-1044.
    Hirokawa, N., and Y. Noda. 2008. Intracellular transport and kinesin superfamily proteins,
    KIFs: structure, function, and dynamics. Physiological reviews. 88:1089-1118.
    Hirokawa, N., and Y. Tanaka. 2015. Kinesin superfamily proteins (KIFs): Various functions
    and their relevance for important phenomena in life and diseases. Experimental
    Cell Research. 334:16-25.
    Jackson, C.L., and J.E. Casanova. 2000. Turning on ARF: the Sec7 family of
    guanine-nucleotide-exchange factors. Trends in Cell Biology. 10:60-67.
    Jones, H.D., J. Moss, and M. Vaughan. 2005. BIG1 and BIG2, brefeldin A-inhibited
    guanine nucleotide-exchange factors for ADP-ribosylation factors. Methods in
    Enzymology. 404:174-184.
    Kahn, R.A., F.G. Kern, J. Clark, E.P. Gelmann, and C. Rulka. 1991. Human
    ADP-ribosylation factors. A functionally conserved family of GTP-binding proteins.
    Journal of Biological Chemistry. 266:2606-2614.
    Kim, J.H., T.W. Kim, and S.J. Kim. 2011. Downregulation of ARFGEF1 and CAMK2B by
    promoter hypermethylation in breast cancer cells. BMB reports. 44:523-528.
    Kim, J.W., S.Y. Lee, M.H. Jeong, S.M. Jang, K.H. Song, C.H. Kim, Y.J. Kim, and K.H.
    Choi. 2008. Interaction of microtubule‐associated protein 1B light chain (MAP1B‐
    LC1) and p53 represses transcriptional activity of p53. Animal Cells and Systems.
    12:69-75.
    Kim, S.H., D.H. Kim, K.H. Lee, S.K. Im, E.M. Hur, K.C. Chung, and H. Rhim. 2014.
    Direct interaction and functional coupling between human 5-HT6 receptor and the
    light chain 1 subunit of the microtubule-associated protein 1B (MAP1B-LC1). PloS
    One. 9:e91402.
    Kondo, Y., A. Hanai, W. Nakai, Y. Katoh, K. Nakayama, and H.W. Shin. 2012. ARF1 and
    ARF3 are required for the integrity of recycling endosomes and the recycling
    pathway. Cell Structure and Function. 37:141-154.
    Kuznetsov, S.A., and V.I. Gelfand. 1987. 18 kDa microtubule-associated protein:
    identification as a new light chain (LC-3) of microtubule-associated protein 1
    (MAP-1). FEBS letters. 212:145-148.
    Langkopf, A., J.A. Hammarback, R. Muller, R.B. Vallee, and C.C. Garner. 1992.
    Microtubule-associated proteins 1A and LC2. Two proteins encoded in one
    38
    messenger RNA. Journal of Biological Chemistry. 267:16561-16566.
    Le, K., C.C. Li, G. Ye, J. Moss, and M. Vaughan. 2013. Arf guanine nucleotide-exchange
    factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring
    myosin phosphatase complex. Proceedings of the National Academy of Sciences of
    the United States of America. 110:E3162-3170.
    Lee, C.M., R.S. Haun, S.C. Tsai, J. Moss, and M. Vaughan. 1992. Characterization of the
    human gene encoding ADP-ribosylation factor 1, a guanine nucleotide-binding
    activator of cholera toxin. Journal of Biological Chemistry. 267:9028-9034.
    Lee, F.J., L.A. Stevens, L.M. Hall, J.J. Murtagh, Jr., Y.L. Kao, J. Moss, and M. Vaughan.
    1994a. Characterization of class II and class III ADP-ribosylation factor genes and
    proteins in Drosophila melanogaster. Journal of Biological Chemistry.
    269:21555-21560.
    Lee, F.J., L.A. Stevens, Y.L. Kao, J. Moss, and M. Vaughan. 1994b. Characterization of a
    glucose-repressible ADP-ribosylation factor 3 (ARF3) from Saccharomyces
    cerevisiae. Journal of Biological Chemistry. 269:20931-20937.
    Lee, S.Y., J.W. Kim, M.H. Jeong, J.H. An, S.M. Jang, K.H. Song, and K.H. Choi. 2008.
    Microtubule-associated protein 1B light chain (MAP1B-LC1) negatively regulates
    the activity of tumor suppressor p53 in neuroblastoma cells. FEBS letters.
    582:2826-2832.
    Li, C.C., J.C. Kuo, C.M. Waterman, R. Kiyama, J. Moss, and M. Vaughan. 2011b. Effects
    of brefeldin A-inhibited guanine nucleotide-exchange (BIG) 1 and KANK1
    proteins on cell polarity and directed migration during wound healing. Proceedings
    of the National Academy of Sciences of the United States of America.
    108:19228-19233.
    Li, G., and X.C. Zhang. 2004. GTP hydrolysis mechanism of Ras-like GTPases. Journal of
    Molecular Biology. 340:921-932.
    Longhurst, D.M., M. Watanabe, J.D. Rothstein, and M. Jackson. 2006. Interaction of
    PDZRhoGEF with microtubule-associated protein 1 light chains: link between
    microtubules, actin cytoskeleton, and neuronal polarity. Journal of Biological
    Chemistry. 281:12030-12040.
    Lowery, L.A., and D. Van Vactor. 2009. The trip of the tip: understanding the growth cone
    machinery. Nature reviews. Molecular Cell Biology. 10:332-343.
    Lu, S., C. Zhao, K. Zhao, N. Li, and C. Larsson. 2008. Novel and recurrent KIF21A
    mutations in congenital fibrosis of the extraocular muscles type 1 and 3. Archives of
    Ophthalmology (Chicago, Ill. : 1960). 126:388-394.
    Luan, S., L. Sun, and F. Huang. 2010. MicroRNA-34a: a novel tumor suppressor in
    p53-mutant glioma cell line U251. Archives of Medical Research. 41:67-74.
    39
    Mack, T.G., M.P. Koester, and G.E. Pollerberg. 2000. The microtubule-associated protein
    MAP1B is involved in local stabilization of turning growth cones. Molecular and
    Cellular Neurosciences. 15:51-65.
    Mandelkow, E., and E.M. Mandelkow. 1995. Microtubules and microtubule-associated
    proteins. Current Opinion in Cell Biology. 7:72-81.
    Manolea, F., A. Claude, J. Chun, J. Rosas, and P. Melançon. 2008. Distinct Functions for
    Arf Guanine Nucleotide Exchange Factors at the Golgi Complex: GBF1 and BIGs
    Are Required for Assembly and Maintenance of the Golgi Stack and trans-Golgi
    Network, Respectively. Molecular Biology of the Cell. 19:523-535.
    Marchbank, K., S. Waters, R.G. Roberts, E. Solomon, and C.A. Whitehouse. 2012.
    MAP1B Interaction with the FW Domain of the Autophagic Receptor Nbr1
    Facilitates Its Association to the Microtubule Network. International Journal of
    Cell Biology. 2012:208014.
    Misumi, Y., Y. Misumi, K. Miki, A. Takatsuki, G. Tamura, and Y. Ikehara. 1986. Novel
    blockade by brefeldin A of intracellular transport of secretory proteins in cultured
    rat hepatocytes. Journal of Biological Chemistry. 261:11398-11403.
    Montenegro-Venegas, C., E. Tortosa, S. Rosso, D. Peretti, F. Bollati, M. Bisbal, I. Jausoro,
    J. Avila, A. Caceres, and C. Gonzalez-Billault. 2010. MAP1B regulates axonal
    development by modulating Rho-GTPase Rac1 activity. Molecular Biology of the
    Cell. 21:3518-3528.
    Morinaga, N., S.-C. Tsai, J. Moss, and M. Vaughan. 1996. Isolation of a brefeldin
    A-inhibited guanine nucleotide-exchange protein for ADP ribosylation factor (ARF)
    1 and ARF3 that contains a Sec7-like domain. Proceedings of the National
    Academy of Sciences of the United States of America. 93:12856-12860.
    Nakai, W., Y. Kondo, A. Saitoh, T. Naito, K. Nakayama, and H.W. Shin. 2013. ARF1 and
    ARF4 regulate recycling endosomal morphology and retrograde transport from
    endosomes to the Golgi apparatus. Molecular Biology of the Cell. 24:2570-2581.
    Nakatsu, F., and H. Ohno. 2003. Adaptor protein complexes as the key regulators of
    protein sorting in the post-Golgi network. Cell Structure and Function. 28:419-429.
    Noble, M., S.A. Lewis, and N.J. Cowan. 1989. The microtubule binding domain of
    microtubule-associated protein MAP1B contains a repeated sequence motif
    unrelated to that of MAP2 and tau. Journal of Cell Biology. 109:3367-3376.
    Nogales, E., S.G. Wolf, and K.H. Downing. 1998. Structure of the alpha beta tubulin dimer
    by electron crystallography. Nature. 391:199-203.
    Noiges, R., H. Stroissnigg, A. Trancikova, I. Kalny, R. Eichinger, and F. Propst. 2006.
    Heterotypic complex formation between subunits of microtubule-associated
    proteins 1A and 1B is due to interaction of conserved domains. Biochimica et
    40
    Biophysica acta. 1763:1011-1016.
    Novick, P., C. Field, and R. Schekman. 1980. Identification of 23 complementation groups
    required for post-translational events in the yeast secretory pathway. Cell.
    21:205-215.
    Ohyu, J., and S. Takashima. 1998. Decreased expression of microtubule-associated protein
    5 (MAP5) in the molecular layer of cerebellum in preterm infants with
    olivocerebellar lesions. Brain & Development. 20:22-26
    Otto-Bruc, A., B. Antonny, T.M. Vuong, P. Chardin, and M. Chabre. 1993. Interaction
    between the retinal cyclic GMP phosphodiesterase inhibitor and transducin.
    Kinetics and affinity studies. Biochemistry. 32:8636-8645.
    Padilla, P.I., G. Pacheco-Rodriguez, J. Moss, and M. Vaughan. 2004. Nuclear localization
    and molecular partners of BIG1, a brefeldin A-inhibited guanine
    nucleotide-exchange protein for ADP-ribosylation factors. Proceedings of the
    National Academy of Sciences of the United States of America. 101:2752-2757.
    Padilla, P.I., M. Uhart, G. Pacheco-Rodriguez, B.A. Peculis, J. Moss, and M. Vaughan.
    2008. Association of guanine nucleotide-exchange protein BIG1 in HepG2 cell
    nuclei with nucleolin, U3 snoRNA, and fibrillarin. Proceedings of the National
    Academy of Sciences of the United States of America. 105:3357-3361.
    Palacios, F., L. Price, J. Schweitzer, J.G. Collard, and C. D'Souza-Schorey. 2001. An
    essential role for ARF6-regulated membrane traffic in adherens junction turnover
    and epithelial cell migration. EMBO Journal. 20:4973-4986.
    Park, S.K., L.M. Hartnell, and C.L. Jackson. 2005. Mutations in a highly conserved region
    of the Arf1p activator GEA2 block anterograde Golgi transport but not COPI
    recruitment to membranes. Molecular Biology of the Cell. 16:3786-3799.
    Puxeddu, E., M. Uhart, C.C. Li, F. Ahmad, G. Pacheco-Rodriguez, V.C. Manganiello, J.
    Moss, and M. Vaughan. 2009. Interaction of phosphodiesterase 3A with brefeldin
    A-inhibited guanine nucleotide-exchange proteins BIG1 and BIG2 and effect on
    ARF1 activity. Proceedings of the National Academy of Sciences of the United
    States of America. 106:6158-6163.
    Radhakrishna, H., and J.G. Donaldson. 1997. ADP-ribosylation factor 6 regulates a novel
    plasma membrane recycling pathway. Journal of Cell Biology. 139:49-61.
    Ramaen, O., A. Joubert, P. Simister, N. Belgareh-Touze, M.C. Olivares-Sanchez, J.C. Zeeh,
    S. Chantalat, M.P. Golinelli-Cohen, C.L. Jackson, V. Biou, and J. Cherfils. 2007.
    Interactions between conserved domains within homodimers in the BIG1, BIG2,
    and GBF1 Arf guanine nucleotide exchange factors. Journal of Biological
    Chemistry. 282:28834-28842.
    Richardson, B.C., C.M. McDonold, and J.C. Fromme. 2012. The Sec7 Arf-GEF is
    41
    recruited to the trans-Golgi network by positive feedback. Developmental Cell.
    22:799-810.
    Ryan, S.D., K. Bhanot, A. Ferrier, Y. De Repentigny, A. Chu, A. Blais, and R. Kothary.
    2012. Microtubule stability, Golgi organization, and transport flux require
    dystonin-a2-MAP1B interaction. Journal of Cell Biology. 196:727-742.
    Safaei, R., and I. Fischer. 1989. Cloning of a cDNA encoding MAP1B in rat brain:
    regulation of mRNA levels during development. Journal of Neurochemistry.
    52:1871-1879.
    Sato-Yoshitake, R., Y. Shiomura, H. Miyasaka, and N. Hirokawa. 1989.
    Microtubule-associated protein 1B: molecular structure, localization, and
    phosphorylation-dependent expression in developing neurons. Neuron. 3:229-238.
    Sato, Y., K. Hayashi, Y. Amano, M. Takahashi, S. Yonemura, I. Hayashi, H. Hirose, S.
    Ohno, and A. Suzuki. 2014. MTCL1 crosslinks and stabilizes non-centrosomal
    microtubules on the Golgi membrane. Nature Communications. 5:5266.
    Schekman, R., and L. Orci. 1996. Coat proteins and vesicle budding. Science (New York,
    N.Y.). 271:1526-1533.
    Schmid, S.L., and H. Damke. 1995. Coated vesicles: a diversity of form and function.
    FASEB Journal. 9:1445-1453.
    Schmidt, A., and A. Hall. 2002. Guanine nucleotide exchange factors for Rho GTPases:
    turning on the switch. Genes & Development. 16:1587-1609.
    Schoenfeld, T.A., L. McKerracher, R. Obar, and R.B. Vallee. 1989. MAP 1A and MAP 1B
    are structurally related microtubule associated proteins with distinct developmental
    patterns in the CNS. Journal of Neuroscience. 9:1712-1730.
    Serafini, T., L. Orci, M. Amherdt, M. Brunner, R.A. Kahn, and J.E. Rothman. 1991.
    ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated
    vesicles: a novel role for a GTP-binding protein. Cell. 67:239-253.
    Shen, X., V. Meza-Carmen, E. Puxeddu, G. Wang, J. Moss, and M. Vaughan. 2008.
    Interaction of brefeldin A-inhibited guanine nucleotide-exchange protein (BIG) 1
    and kinesin motor protein KIF21A. Proceedings of the National Academy of
    Sciences of the United States of America. 105:18788-18793.
    Shin, H.W., N. Morinaga, M. Noda, and K. Nakayama. 2004. BIG2, a guanine nucleotide
    exchange factor for ADP-ribosylation factors: its localization to recycling
    endosomes and implication in the endosome integrity. Molecular Biology of the
    Cell. 15:5283-5294.
    Stearns, T., R.A. Kahn, D. Botstein, and M.A. Hoyt. 1990. ADP ribosylation factor is an
    essential protein in Saccharomyces cerevisiae and is encoded by two genes.
    Molecular and Cellular Biology. 10:6690-6699.
    42
    Stroissnigg, H., A. Trancikova, L. Descovich, J. Fuhrmann, W. Kutschera, J. Kostan, A.
    Meixner, F. Nothias, and F. Propst. 2007. S-nitrosylation of microtubule-associated
    protein 1B mediates nitric-oxide-induced axon retraction. Nature Cell Biology.
    9:1035-1045.
    Sun, H., X.Q. Hu, M.B. Emerit, J.C. Schoenebeck, C.E. Kimmel, R.W. Peoples, A. Miko,
    and L. Zhang. 2008. Modulation of 5-HT3 receptor desensitization by the light
    chain of microtubule-associated protein 1B expressed in HEK 293 cells. Journal of
    Physiology. 586:751-762.
    Takai, Y., T. Sasaki, and T. Matozaki. 2001. Small GTP-binding proteins. Physiological
    reviews. 81:153-208.
    Tanyalcin, I., H. Verhelst, D.J. Halley, T. Vanderhasselt, L. Villard, C. Goizet, W. Lissens,
    G.M. Mancini, and A.C. Jansen. 2013. Elaborating the phenotypic spectrum
    associated with mutations in ARFGEF2: case study and literature review. European
    Paediatric Neurology Society. 17:666-670.
    Togawa, A., N. Morinaga, M. Ogasawara, J. Moss, and M. Vaughan. 1999. Purification and
    cloning of a brefeldin A-inhibited guanine nucleotide-exchange protein for
    ADP-ribosylation factors. Journal of Biological Chemistry. 274:12308-12315.
    Togel, M., G. Wiche, and F. Propst. 1998. Novel features of the light chain of
    microtubule-associated protein MAP1B: microtubule stabilization, self interaction,
    actin filament binding, and regulation by the heavy chain. Journal of Cell Biology.
    143:695-707.
    Tucker, R.P., C.C. Garner, and A. Matus. 1989. In situ localization of
    microtubule-associated protein mRNA in the developing and adult rat brain.
    Neuron. 2:1245-1256.
    Tymanskyj, S.R., T.M. Scales, and P.R. Gordon-Weeks. 2012. MAP1B enhances
    microtubule assembly rates and axon extension rates in developing neurons.
    Molecular and Cellular Neurosciences. 49:110-119.
    Utreras, E., E.M. Jimenez-Mateos, E. Contreras-Vallejos, E. Tortosa, M. Perez, S. Rojas, L.
    Saragoni, R.B. Maccioni, J. Avila, and C. Gonzalez-Billault. 2008.
    Microtubule-associated protein 1B interaction with tubulin tyrosine ligase
    contributes to the control of microtubule tyrosination. Developmental Neuroscience.
    30:200-210.
    van der Vaart, B., W.E. van Riel, H. Doodhi, J.T. Kevenaar, E.A. Katrukha, L. Gumy, B.P.
    Bouchet, I. Grigoriev, S.A. Spangler, K.L. Yu, P.S. Wulf, J. Wu, G. Lansbergen, E.Y.
    van Battum, R.J. Pasterkamp, Y. Mimori-Kiyosue, J. Demmers, N. Olieric, I.V.
    Maly, C.C. Hoogenraad, and A. Akhmanova. 2013. CFEOM1-associated kinesin
    KIF21A is a cortical microtubule growth inhibitor. Developmental Cell.
    43
    27:145-160.
    Vetter, I.R., and A. Wittinghofer. 2001. The guanine nucleotide-binding switch in three
    dimensions. Science (New York, N.Y.). 294:1299-1304.
    Wang, Z., Y. Zhang, S. Zhang, Q. Guo, Y. Tan, X. Wang, R. Xiong, J. Ding, and S. Chen.
    2011. DJ-1 can inhibit microtubule associated protein 1 B formed aggregates.
    Molecular Neurodegeneration. 6:38.
    Wennerberg, K., K.L. Rossman, and C.J. Der. 2005. The Ras superfamily at a glance.
    Journal of Cell Science. 118:843-846.
    Wright, J., R.A. Kahn, and E. Sztul. 2014. Regulating the large Sec7 ARF guanine
    nucleotide exchange factors: the when, where and how of activation. Cellular and
    Molecular Life Sciences. 71:3419-3438.
    Yi, Z., L. Sperzel, C. Nurnberger, P.J. Bredenbeek, K.J. Lubick, S.M. Best, C.T. Stoyanov,
    L.M. Law, Z. Yuan, C.M. Rice, and M.R. MacDonald. 2011. Identification and
    characterization of the host protein DNAJC14 as a broadly active flavivirus
    replication modulator. PLoS Pathogens. 7:e1001255.
    Yi, Z., Z. Yuan, C.M. Rice, and M.R. MacDonald. 2012. Flavivirus replication complex
    assembly revealed by DNAJC14 functional mapping. Journal of Virology.
    86:11815-11832.
    Yonashiro, R., Y. Kimijima, T. Shimura, K. Kawaguchi, T. Fukuda, R. Inatome, and S.
    Yanagi. 2012. Mitochondrial ubiquitin ligase MITOL blocks S-nitrosylated
    MAP1B-light chain 1-mediated mitochondrial dysfunction and neuronal cell death.
    Proceedings of the National Academy of Sciences of the United States of America.
    109:2382-2387.
    Zauner, W., J. Kratz, J. Staunton, P. Feick, and G. Wiche. 1992. Identification of two
    distinct microtubule binding domains on recombinant rat MAP 1B. European
    Journal of Cell Biology. 57:66-74.
    Zhao, X., T.K. Lasell, and P. Melancon. 2002. Localization of large ADP-ribosylation
    factor-guanine nucleotide exchange factors to different Golgi compartments:
    evidence for distinct functions in protein traffic. Molecular Biology of the Cell.
    13:119-133.

    無法下載圖示 校內:2025-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE