| 研究生: |
施岱汝 Shih, Tai-Ju |
|---|---|
| 論文名稱: |
利用硼和鍶同位素解析台灣西南部二仁溪河水化學之時空變化 Using boron and strontium isotopes to explore the temporal and spatial variations of the Erren River water chemistry in southwestern Taiwan |
| 指導教授: |
游鎮烽
You, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 二仁溪 、河水 、硼同位素 、鍶同位素 |
| 外文關鍵詞: | Erren river, River water, Boron isotope, Strontium isotope |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
河水做為水循環的一部份,在生態環境中是不可或缺的淡水資源,若因為人類活動對河水造成過多的汙染,不僅會影響流域生態,也可能會因為匯入海水而擴大影響範圍。除了用各種元素濃度作為簡單的指標,許多研究利用硼同位素或鍶同位素在河水不同端源的差異性,來了解風化作用與人為汙染對河水的影響,從而更深入理解水循環的機制。台灣二仁溪在1970~1980年代,因為工業發展導致嚴重的重金屬汙染,重創當地的生態環境。除此之外,二仁溪流域內的人為活動,包括農作物施肥、畜牧放流以及民生汙水,也對河水化學組成和生態造成不同程度的影響。
本研究旨在探討二仁溪河水於空間及時間上是否有明顯的化學組成變化,嘗試區分自然環境與人為汙染端源,並判別近年人為汙染程度的變動。我們於2021年7月採集二仁溪從上至下游的河水樣品,作為探討空間上變化的依據,並結合前人文獻的數據,探討河水化學組成於時間上的變化。河水的陰離子濃度是利用離子層析儀(IC)量測,並以感應耦合電漿原子放射光譜儀(ICP-OES)與四極柱感應耦合電漿質譜儀(ICP-QMS)測定其他主要元素與微量元素濃度。硼和鍶同位素分析則是先於無塵室中分別使用微昇華法及管柱層析法,進行硼、鍶純化,再以多接收器感應耦合電漿質譜儀(MC-ICP-MS)精確測量硼同位素(δ11B)與鍶同位素(87Sr/86Sr)用於後續討論。
結果顯示,二仁溪流域的河水在空間上的組成差異主要受岩石風化與海水的影響,其中δ11B範圍為+4.8到+30.4‰,差異約26‰;而87Sr/86Sr範圍落在0.709679~0.71044。結合前人文獻中2000、2001與2012年,相同採樣點的河水樣品數據共同探討,透過元素濃度及δ11B、87Sr/86Sr的數據分析,顯示二仁溪上游地區河水主要受矽酸鹽風化影響,而下游地區則是受海水、海水鹽沫或天水的影響較為顯著,與區域地質和水文條件吻合。另外,根據δ11B與Cl⁻/Na、NO3⁻/B濃度比值分析,近年二仁溪中下游地區的支流可能仍有受到些微的人為汙染。
River water, as a part of the water cycle, is an essential resource for ecosystems and the most accessible freshwater resource for human development. Beside using various element concentrations as simple indicators, many studies utilize the different indexes, such as boron isotopes or radiogenic strontium isotopes in river water end-members, to understand the relationship between river water, weathering processes, and anthropogenic pollution. This study investigates whether there are significant spatial and temporal variations in the chemical composition of the Erren River water, aiming to distinguish between natural and anthropogenic contribution to the river and to determine if there is ongoing anthropogenic pollution in recent years. We collected river water samples from the Erren River, spanning from upstream to downstream, to examine spatial variations. The river water samples were processed through micro-sublimation or column chromatography, followed by isotope measurement using MC-ICP-MS. The δ11B ranges from +4.8‰ to +30.4‰, with a variation of about 26‰, while the 87Sr/86Sr ranges from 0.709679 to 0.710446. Analysis of major ion and element concentrations, along with boron and strontium isotopic composition, indicates that the upstream river water is mainly influenced by silicate weathering, whereas the downstream areas are significantly affected by seawater, sea spray, and precipitation, consistent with regional geological and hydrological conditions. Additionally, analysis of δ11B and Cl⁻/Na and NO3⁻/B concentration ratios suggests that tributaries in the mid to lower parts of the Erren River may still be affected by anthropogenic pollution in recent years.
中文部分
台灣質譜學會,2015。質譜分析技術原理與應用。全華圖書,新北市,初版,共512頁。
周建良,2008。台灣西南部二仁溪流域盆地的沈積物風化與河水化學。國立成功大學地球科學系碩士在職專班,碩士論文,共92頁。
郭天樂,2011。鋅同位素在台灣南部二仁溪中的來源與分布特性。國立成功大學理學院地球科學系,碩士論文,共75頁。
陳易正,2012。二仁溪河水溶解鉛之分布及來源。國立成功大學理學院地球科學系,碩士論文,共61頁。
楊維忠、張甜,2012。SPSS統計分析與應用學習實務。上奇資訊,台北市,初版,共576頁。
劉郁青,2011。硼同位素在台灣南部高屏溪及二仁溪流域之分布特性。國立成功大學理學院地球科學系,碩士論文,共81頁。
聯合報,2021年3月14日。二仁溪毒廢完成調查砸14億清除。聯合報,第B版。
鍾小良,2002。二仁溪河水地球化學和同位素初探。國立成功大學理學院地球科學系,碩士論文,共85頁。
鍾全雄、黃國芳、王博賢、游鎮烽,2007。高精密無機質譜儀在地球科學及海洋科學研究上的應用。化學,中國化學會,65卷2期,113~124頁。
英文部分
Allaby, M., 2020, A Dictionary of Geology and Earth Sciences, Oxford University Press.
Barth, S., 1993, Boron isotope variations in nature: a synthesis: Geologische Rundschau, v. 82, no. 4, p. 640-651.
Basu, A. R., Jacobsen, S. B., Poreda, R. J., Dowling, C. B., and Aggarwal, P. K., 2001, Large Groundwater Strontium Flux to the Oceans from the Bengal Basin and the Marine Strontium Isotope Record: Science, v. 293, no. 5534, p. 1470-1473.
Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M., and Prohaska, T., 2014, Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report): Pure and Applied Chemistry, v. 86, no. 3, p. 425-467.
Champion, C. E., Marinenko, G., Sappenfield, K. M., Catanzaro, E. J., and Shields, W. R., 1970, Standard Reference Materials:Boric acid; isotopic, and assay standard reference materials, , National Institute of Standards and Technology, Gaithersburg, MD, p. 1-70.
Chao, H.-C., You, C.-F., Liu, H.-C., and Chung, C.-H., 2013, The origin and migration of mud volcano fluids in Taiwan: Evidence from hydrogen, oxygen, and strontium isotopic compositions: Geochimica et Cosmochimica Acta, v. 114, p. 29-51.
Chao, H.-C., You, C.-F., Wang, B.-S., Chung, C.-H., and Huang, K.-F., 2011, Boron isotopic composition of mud volcano fluids: Implications for fluid migration in shallow subduction zones: Earth and Planetary Science Letters, v. 305, no. 1, p. 32-44.
Cheng, M.-C., You, C.-F., Lin, F.-J., Chung, C.-H., and Huang, K.-F., 2010, Seasonal variation in long-range transported dust to a subtropical islet offshore northern Taiwan: Chemical composition and Sr isotopic evidence in rainwater: Atmospheric Environment, v. 44, no. 28, p. 3386-3393.
Chetelat, B., and Gaillardet, J., 2005, Boron Isotopes in the Seine River, France: A Probe of Anthropogenic Contamination: Environmental Science & Technology, v. 39, no. 8, p. 2486-2493.
Chung, C.-H., You, C.-F., and Chu, H.-Y., 2009, Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements: Journal of Marine Systems, v. 76, no. 4, p. 433-443.
De Bièvre, P. J., and Debus, G. H., 1969, Absolute isotope ratio determination of a natural boron standard: International Journal of Mass Spectrometry and Ion Physics, v. 2, no. 1, p. 15-23.
Dickson, A. G., 1990, Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K: Deep Sea Research Part A. Oceanographic Research Papers, v. 37, no. 5, p. 755-766.
Foster, G. L., Lécuyer, C., and Marschall, H. R., 2016, Boron Stable Isotopes, in White, W. M., ed., Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth: Cham, Springer International Publishing, p. 1-6.
Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C. J., 1999, Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers: Chemical Geology, v. 159, no. 1, p. 3-30.
Gaillardet, J., Lemarchand, D., Göpel, C., and Manhès, G., 2001, Evaporation and Sublimation of Boric Acid: Application for Boron Purification from Organic Rich Solutions: Geostandards Newsletter, v. 25, no. 1, p. 67-75.
He, M., Jin, Z., Lu, H., Deng, L., and Luo, C., 2016, The different cones combination enhanced sensitivity on MC-ICP-MS: The results from boron isotope analysis: International Journal of Mass Spectrometry, v. 408, p. 33-37.
Hemming, N. G., and Hönisch, B., 2007, Boron Isotopes in Marine Carbonate Sediments and the pH of the Ocean, in Hillaire–Marcel, C., and De Vernal, A., eds., Developments in Marine Geology, Volume 1, Elsevier, p. 717-734.
Hershey, J. P., Fernandez, M., Milne, P. J., and Millero, F. J., 1986, The ionization of boric acid in NaCl, Na-Ca-Cl and Na-Mg-Cl solutions at 25°C: Geochimica et Cosmochimica Acta, v. 50, no. 1, p. 143-148.
Hoefs, J., 2015, Stable Isotope Geochemistry, Springer International Publishing.
Holden, N. E., 1993, The atomic weight and isotopic composition of boron and their variation in nature: Brookhaven National Lab., Upton, NY (United States).
Horacek, M., 2022, The Need to Consider Geochemistry When Interpreting Sr-Isotopes. Comment on Gregorčič et al. The Provenance of Slovenian Milk Using 87Sr/86Sr Isotope Ratios. Foods 2021, 10, 1729: Foods, v. 11, no. 4, p. 564.
Jackson, P. E., 2006, Ion Chromatography in Environmental Analysis, Encyclopedia of Analytical Chemistry, p. 3-23.
Kakihana, H., Kotaka, M., Satoh, S., Nomura, M., and Okamoto, M., 1977, Fundamental Studies on the Ion-Exchange Separation of Boron Isotopes: Bulletin of the Chemical Society of Japan, v. 50, no. 1, p. 158-163.
Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H., and Tossell, J. A., 2006, Experimental measurement of boron isotope fractionation in seawater: Earth and Planetary Science Letters, v. 248, no. 1, p. 276-285.
Kuehner, E. C., Alvarez, R., Paulsen, P. J., and Murphy, T. J., 1972, Production and analysis of special high-purity acids purified by subboiling distillation: Analytical Chemistry, v. 44, no. 12, p. 2050-2056.
Lemarchand, D., Gaillardet, J., Göpel, C., and Manhès, G., 2002, An optimized procedure for boron separation and mass spectrometry analysis for river samples: Chemical Geology, v. 182, no. 2, p. 323-334.
Lin, Y.-P., You, C.-F., Kao, T.-Y., Chung, C.-H., and Hung, C.-C. G., 2021, Boron Isotopic Analysis of Representative Atmospheric Aerosols Derived From Long-Range Transported/Local Emission on an Islet Offshore NE Taiwan: Frontiers in Environmental Science, v. 9, p. 697844.
Liu, H.-C., Chen, Y.-H., You, C.-F., and Chung, C.-H., 2021, Precise δ88/86Sr determination on a MC-ICP-MS by an improved method combining Zr-empirical external normalization isobaric interference correction and 84Sr–87Sr double spike: Journal of Analytical Atomic Spectrometry, v. 36, no. 11, p. 2322-2329.
Liu, H.-C., Chung, C.-H., You, C.-F., and Chiang, Y.-H., 2016, Determination of 87Sr/86Sr and δ88/86Sr ratios in plant materials using MC-ICP-MS: Analytical and Bioanalytical Chemistry, v. 408, no. 2, p. 387-397.
Liu, H.-C., You, C.-F., Huang, K.-F., and Chung, C.-H., 2012a, Precise determination of triple Sr isotopes (δ87Sr and δ88Sr) using MC-ICP-MS: Talanta, v. 88, p. 338-344.
Liu, Y.-C., You, C.-F., Huang, K.-F., Wang, R.-M., Chung, C.-H., and Liu, H.-C., 2012b, Boron sources and transport mechanisms in river waters collected from southwestern Taiwan: Isotopic evidence: Journal of Asian Earth Sciences, v. 58, p. 16-23.
Mahlknecht, J., Merchán, D., Rosner, M., Meixner, A., and Ledesma-Ruiz, R., 2017, Assessing seawater intrusion in an arid coastal aquifer under high anthropogenic influence using major constituents, Sr and B isotopes in groundwater: Science of The Total Environment, v. 587-588, p. 282-295.
Mao, H.-R., Liu, C.-Q., and Zhao, Z.-Q., 2019, Source and evolution of dissolved boron in rivers: Insights from boron isotope signatures of end-members and model of boron isotopes during weathering processes: Earth-Science Reviews, v. 190, p. 439-459.
Marschall, H., and Foster, G., 2018, Boron isotopes: The Fifth Element, Springer Cham, Advances in Isotope Geochemistry.
Moore, L. J., Murphy, T. J., Barnes, I. L., and Paulsen, P. J., 1982, Absolute Isotopic Abundance Ratios and Atomic Weight of a Reference Sample of Strontium: J Res Natl Bur Stand (1977), v. 87, no. 1, p. 1-8.
Olesik, J. W., 1991, Elemental analysis using ICP-OES and ICP/MS: Analytical Chemistry, v. 63, no. 1, p. 12A-21A.
Park, H., and Schlesinger, W. H., 2002, Global biogeochemical cycle of boron: Global Biogeochemical Cycles, v. 16, no. 4, p. 20.
Pi, J.-L., You, C.-F., and Chung, C.-H., 2014, Micro-sublimation separation of boron in rock samples for isotopic measurement by MC-ICPMS: Journal of Analytical Atomic Spectrometry, v. 29, no. 5, p. 861-867.
Rosman, K. J. R., and Taylor, P. D. P., 1998, Isotopic compositions of the elements 1997 (Technical Report): Pure and Applied Chemistry, v. 70, no. 1, p. 217-235.
Roy, S., Gaillardet, J., and Allègre, C. J., 1999, Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering: Geochimica et Cosmochimica Acta, v. 63, no. 9, p. 1277-1292.
Tu, Y.-J., You, C.-F., and Kuo, T.-Y., 2020, Source identification of Zn in Erren River, Taiwan: An application of Zn isotopes: Chemosphere, v. 248, p. 126044.
Tyler, G., and Yvon, J., 2003, ICP-OES, ICP-MS and AAS Techniques Compared: ICP Optical Emission Spectroscopy Technical Note, v. 5, p. 1-11.
Veizer, J., 1989, Strontium Isotopes in Seawater through Time: Annual Review of Earth and Planetary Sciences, v. 17, no. Volume 17, 1989, p. 141-167.
Wang, B.-S., You, C.-F., Huang, K.-F., Wu, S.-F., Aggarwal, S. K., Chung, C.-H., and Lin, P.-Y., 2010, Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS: Talanta, v. 82, no. 4, p. 1378-1384.
Xiao, J., Lv, G., Chai, N., Hu, J., and Jin, Z., 2022, Hydrochemistry and source apportionment of boron, sulfate, and nitrate in the Fen River, a typical loess covered area in the eastern Chinese Loess Plateau: Environmental Research, v. 206, p. 112570.
Yang, L., 2009, Accurate and precise determination of isotopic ratios by MC-ICP-MS: A review: Mass Spectrometry Reviews, v. 28, no. 6, p. 990-1011.
Yang, L., Peter, C., Panne, U., and Sturgeon, R. E., 2008, Use of Zr for mass bias correction in strontium isotope ratio determinations using MC-ICP-MS: Journal of Analytical Atomic Spectrometry, v. 23, no. 9, p. 1269-1274.
You, C.-F., Gieskes, J. M., Lee, T., Yui, T.-F., and Chen, H.-W., 2004, Geochemistry of mud volcano fluids in the Taiwan accretionary prism: Applied Geochemistry, v. 19, no. 5, p. 695-707.