簡易檢索 / 詳目顯示

研究生: 陳名輝
Chen, Ming-Hui
論文名稱: 應用磁電耦合分析之同步磁阻馬達驅動器研製
Development of Synchronous Reluctance Motor (SynRM) Driver Using Electromagnetic Co-simulation Analysis
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 110
中文關鍵詞: 同步磁阻馬達多重物理量磁電耦合磁場導向控制Simplorer
外文關鍵詞: SynRM, multiphysics analysis, electromagnetic co-simulation, field-oriented control, Simplorer
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主旨在於提出利用磁電耦合分析應用於同步磁阻馬達驅動器之研製。本文所發展之耦合模擬是基於同步磁阻馬達的有限元素分析與三相馬達驅動電路、控制法則三者整合模擬。傳統上馬達、驅動電路、控制演算法為獨立分析設計,耦合分析將設計從元件層提升到系統層。針對不同的操作需求,耦合分析可以反映出當下的系統即時變化,進而提供設計者系統參數的交互影響。
    本文首先討論耦合模擬架構的設計與規劃。藉由馬達規格、激磁時序、額定電壓、電流、轉矩的關係,算出所需的驅動器設計與規格。透過馬達有限元素分析、單獨馬達電磁場分析比較、與磁電耦合模擬驗證設計的可行性。利用三相弦波、向量控制、磁場導向控制發展為主控制架構,。同步磁阻馬達驅動器之系統開發藉由模擬參數分析、應用磁場導向控制法之實現,並經由實驗驗證其磁電耦合分析之正確性。

    The aim of this study is to manifest the development of a synchronous reluctance motor (SynRM) driver using multiphysics electromagnetic co-simulation analysis. The co-simulation integrates the 2-dimensional (2-D) electromagnetics finite element analysis, a three-phase inverter model and the control algorithm. Conventionally, the analysis of an electric motor drive system is separated and there exists little co-operation between motor designers and system developers at the design stage. The analysis is hence based on individual items at the component level. The potential for a co-simulation analysis reflects the real system response and parameter effects in different operating scenarios. In this study, the co-simulation method provides functionality to analyze the interaction between the electronics driver and electromagnetic characteristics of an electric motor.
    This research initially discusses the implementation of a co-simulation architecture in Simplorer. A comparison between the sole Maxwell 2-D simulation and the co-simulation with Simplorer is introduced. A control algorithm implementation using a sinusoidal PWM, a sinusoidal vector control, and field-oriented control are employed. Secondly, a microcontroller with a three-phase inverter is developed. The final presentation is to establish a comparison between the Simplorer co-simulation and the experimental results.

    摘要 I Abstract II Acknowledgement III Contents IV List of Figures VII List of Tables X Nomenclature XI 1 Introduction 1 1.1 Research background 1 1.2 The purpose of using Synchronous Reluctance Motor (SynRM) 2 1.3 Aim of the thesis 3 2 Literature review 4 2.1 Research of control strategies and concerns 4 2.2 The purpose of developing the multiphysics domain co-simulation 6 3 The development of SynRM driver 8 3.1 Mathematical model and equivalent circuit 8 3.2 Field-oriented control of SynRM 13 3.2.1 Coordinate transformation 14 3.2.1.1 Clarke transformation: theory of coordinate transformation 16 3.2.1.2 Park transformation 19 3.2.1.3 Inverse Park transformation 20 3.2.1.4 Inverse Clarke transformation 21 4 The architecture of simulation 22 4.1 Design of simulation procedure 23 4.2 System design in Simplorer 24 4.3 Control block diagrams 25 4.3.1 Sinusoidal PWM Generator 26 4.3.2 Space vector modulation 26 4.4 The co-simulation diagram for velocity and torque control 29 4.4.1 The block diagram of velocity loop 30 4.4.2 The block diagram of d-axis (Id) current loop 30 4.4.3 The block diagram of q-axis (Iq) current loop 31 4.4.4 The block diagram for the PI Controller 32 4.4.5 The implementation of coordinate transformation 33 4.4.5.1 Clarke transformation 33 4.4.5.2 Park transformation 35 4.4.5.3 Inverse Park transformation 36 4.4.5.4 Inverse Clarke transformation 37 4.5 Sinusoidal PWM generator module 1 38 4.6 Space vector modulation (SVM) 39 4.6.1 Sector 39 4.6.2 Modified inverse Clarke transformation for SVM 41 4.6.3 Time dividing 42 4.6.4 The transformation of time dividing 43 4.6.5 Three-phase reference sinusoidal generator 44 4.7 Pulse-width modulation module 2 (PWM generator) 45 4.8 Scale factor and level shift 46 4.9 Multiplexer (MUX) with control and trigger signal 47 4.10 Multiplexer (MUX) with a three-phase PWM reference signal and six control signal output 48 4.11 Maxwell electromagnetic model using finite element analysis 49 5 Simulation 51 5.1 The summary list of simulation cases 52 5.2 The comparison between Maxwell and Simplorer co-simulation 53 5.2.1.1 Results of Maxwell external circuit simulation with constant velocity analysis 54 5.2.2 Co-simulation with constant velocity analysis 56 5.2.2.1 Results of co-simulation with constant velocity analysis 58 5.2.3 Summary 59 5.3 Co-simulation of closed-loop vector control 60 5.3.1 Co-simulation results of closed-loop vector control 63 5.3.2 Summary 67 5.4 Co-simulation with closed-loop vector control in various velocity and torque command 68 5.4.1 Results of co-simulation of closed-loop vector control in various velocity and torque command 69 5.4.2 Summary 73 5.5 Field-oriented space vector control 74 5.5.1 Results of co-simulation of the field-oriented space vector control at rated torque load (3.0 N-m) 76 5.5.2 Results of co-simulation of the field-oriented space vector control in various velocity and torque command 77 5.5.3 Summary 79 6 Implementation of the SynRM drive system 80 6.1 General hardware review 80 6.2 Equipment requirement 80 6.3 Specification 82 6.3.1 Motor specification 82 6.3.2 Micro-controller board 82 6.3.3 The diagram of the inverter 84 6.3.4 Sensors 85 6.3.5 Photocoupler circuit 87 6.4 The firmware implemented in dsPIC30F4011 88 6.5 Main software state machine 93 7 Experiment comparison and discussion 95 7.1 Motor inductance measurement 95 7.2 Comparison between experiment and co-simulation 98 7.2.1 Experimental setup 98 7.2.2 No-load test 101 7.2.3 Load test 103 8 Conclusion and future work 106 8.1 Conclusion 106 8.2 Future work 107 References 108

    [1] Alternative Fuels Data Center, U.S Department of Engergy's Clean program, "Chronology of Federal Legislation and Legislation Summaries," http://www.afdc.energy.gov/laws/key_legislation.
    [2] CEMEP Working Group, “Electric Motors and Variable Speed Drives Standards and Legal Requirements for the Energy Efficiency of Low-Voltage Three-phase Motors,” February 2011.
    [3] J. Blondeau, "Motors moving to IE codes," http://www.iec.ch/etech/2015/etech_0315/tech-4.htm, March 2015.
    [4] 鄭詠仁, “高效率馬達節能應用技術,” 台灣區機器工業同業公會, [Online]. Available: http://www.tami.org.tw/sp1/bulletin/other/other_990629.pdf, 2008.
    [5] 工業技術研究院綠能與環境研究所, “高效率馬達節能效益,”經濟部能源局, [Online]. Available: https://egov.ftis.org.tw/Downloads/FtisBooks/ImproveBooks/高效率馬達節能效益.pdf .
    [6] 張心紜, “高效率馬達節能效益,”經濟部能源局,
    [Online]. Available: http://energymonthly.tier.org.tw/report/201410/10310.pdf, October 2014.
    http://energymonthly.tier.org.tw/report/201410/10310.pdf
    [7] N. Bianchi, O. Bottesi, and L. Alberti, “Energy Efficiency Improvement Adopting Synchronous Motors,” 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), 2013.
    [8] B. Benkhart, T. Bishop, R. Boteler, D. Brender, W. Brithinee, K. Butler, J. Caroff, D. Casada, J. Fischer, K. Gettman, W. Hoyt, J. Kueck, J. Machelor, J. Malinowski, I. Mason, G. McCoy, S. McInerney, C. Nyberg, H. W. Penrose, L. Raynes, T. Schumann, C. Straub, E. J. Swann, J. Tolbert, and C. Yung, “Improving Motor and Drive System Performance,” U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, Feburary 2014.
    [9] P. P. Waide, and C. U. Brunner, “Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems,” International Energy Agency, 2011.
    [10] T. Fleiter, W. Eichhammer, and J. Schleich, “Energy Efficiency in Electric Motor Systems: Technical Potentials and Policy Approaches for Developing Countries,” United Nations Industrial Development Organization (UNIDO), 2011.
    [11] A. Farhan, A. Saleh, and A. Shaltout, “High Performance Reluctance Synchronous Motor Drive Using Field Oriented Control,” IEEE In Proceedings of International Conference on Modelling, Identification & Control (ICMIC), pp. 181-186, 2013.
    [12] C. M. Spargo, “Synchronous Reluctance Technology ” UK Magnetics Society, Dec 31, 2014.
    [13] H. Van Khang, J.-M. Kim, J.-W. Ahn, and H. Li, “Synchronous Reluctance Motor Drive System Parameter Identification Using a Current Regulator,” IEEE In Proceedings of APEC Twenty-Third Annual Applied Power Electronics Conference and Exposition, pp. 370-376, 2008.
    [14] CEATI International, “Variable Frequency Drives Energy Efficiency Reference Guide,” 2009.
    [15] C. Edwards, “Motor Drives Focus on Energy Efficiency,” Engineering and Technology Magazine, vol. 9, no. 3, 10 March, 2014.
    [16] 康基宏, “馬達系統節能方法及其效益,”[Online]. Available: http://www.tgpf.org.tw/event/file/20140710/02 _馬達系統節能方法及其效益.pdf , July 2014.
    [17] S. Lee, T. Lemley, and G. Keohane, “A Comparison Study of the Commutation Methods for the Three - Phase Permanent Magnet Brushless DC Motor,” Magnelab Inc., Feburary 2015.
    [18] B. K. Bose, T. J. E. Miller, P. M. Szczesny, and W. H. Bicknell, “Microcomputer Control of Switched Reluctance Motor,” IEEE Transactions on Industry Applications, vol. IA-22, no. 4, pp. 708-715, 1986.
    [19] K. Iizuka, H. Uzuhashi, M. Kano, T. Endo, and K. Mohri, “Microcomputer Control for Sensorless Brushless Motor,” IEEE Transactions on Industry Applications, vol. IA-21, no. 3, pp. 595-601, 1985.
    [20] K. George, S. Gopinathan, and K. Shinoy, “A Comparison of Three Phase and Five Phase BLDC Motor,” International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, no. 1, pp. 1-8, December 2013.
    [21] M. Bhardwaj, “Sensored Field Oriented Control of 3-Phase Permanent Magnet Synchronous Motors,” Texas Instruments Application Report, [Online]. Available: http://www.ti.com/lit/an/sprabq2/sprabq2.pdf , July 2013.
    [22] Microchip Technology Inc., “Sensorless Field Oriented Control (FOC) for Permanent Magnet Synchronous Motors (PMSM),” Microchip WebSemianrs, [Online]. Available: http://www.microchip.com/stellent/groups/SiteComm_sg/documents/Training_Tutorials/en532365.pdf
    [23] E. Prasad, B. Suresh, and K. Raghuveer, “Field Oriented Control of PMSM Using SVPWM Technique,” Global Journal of Advanced Engineering Technologies, vol. 1, no. 2-2012, pp. 39-45, 2012.
    [24] N. Dai, R. Dutta, and M. Rahman, “Comparative Performance Analysis of Field-Oriented Control and Direct Torque Control for a Fractional-slot Concentrated winding interior permanent magnet synchronous machine,” IEEE In Proceeding of XXth International Conference on Electrical Machines (ICEM), pp. 879-885, 2012.
    [25] T. Matsuo, and T. A. Lipo, “Field Oriented Control of Synchronous Reluctance Machine,” In Proceesing of 24th Annual IEEE Power Electronics Specialists Conference (PESC'93 Record), pp. 425-431, 1993.
    [26] R. W. Pryor, Multiphysics Modeling Using COMSOL: A First Principles Approach: Jones & Bartlett Learning, 2011.
    [27] O. S. Kachin, A. V. Kiselev, and A. B. Serov, “Research of Operation Modes of the Synchronous Electric Motor Drive System with Use of Software ANSYS Maxwell and Simplorer,” IEEE Proceeding of 15th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), pp. 362-364, 2014.
    [28] S. Jiang, J. Liang, Y. Liu, K. Yamazaki, and M. Fujishima, “Modeling and Cosimulation of FPGA-based SVPWM Control for PMSM,” Proceeding of 31st Annual Conference of IEEE Industrial Electronics Society, pp. 1538-1543, 6-10 November 2005.
    [29] S. Berto, S. Bolognani, M. Ceschia, A. Paccagnella, and M. Zigliotto, “FPGA-based Random PWM with Real-Time Dead Time Compensation,” In Proceeding of IEEE 34th Annual Power Electronics Specialist Conference, vol. 2, pp. 513-518, 2003.
    [30] J. Eriksson, and L. Hermansen, “Rapid Prototyping: Development and Evaluation of Field Oriented Control Using LabView FPGA,” M.S Thesis, Mäladalen University, IDT, 2011.
    [31] A. Consoli, C. Cavallaro, G. Scarcella, and A. Testa, “Sensorless Torque Control of SyncRel Motor Drives,” IEEE Transactions on Power Electronics, vol. 15, no. 1, pp. 28-35, 2000.
    [32] B.-R. Lin, “High Power Factor AC/DC/AC Converter with Random PWM,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35, no. 3, pp. 935-943, 1999.
    [33] A. Ortega Dulanto, “Design of a Synchronous Reluctance Motor Assisted with Permanent Magnets for Pump Applications,” M.S Thesis, Department of Electrical Machines and Drives, Kungliga Tekniska Högskolan, 2015.
    [34] B. K. Bose, Power Electronics and Motor Drives: Advances and Trends: Academic press, 2010.
    [35] J. Zambada and D. Deb, “Sensorless FOC for PMSM with dsPIC® DSC.” Microchip Technology Inc., [Online]. Available: http://ww1.microchip.com/downloads/en/AppNotes/01078B.pdf, 2010.
    [36] J. Zambada, “AN1017 Sinusoidal Control of PMSM Motors with dsPIC30F DSC,” Microchip Technology Inc., [Online]. Available: http://ww1.microchip.com/downloads/en/AppNotes/01017A.pdf, December 2005.
    [37] G. Newton, “Part 1: Using Vectors to Approximate the Neutral Current in a Three Phase Power System,” [Online]. Available: http://www.electrician2.com/electa1/electa3htm.htm, November 3, 1999.
    [38] Microsemi Corporation, “Park, Inverse Park and Clarke, Inverse Clarke Transformations MSS Software Implementation.” [Onine]. Available: http://www.microsemi.com/document-portal/doc_view/132799-park-inverse-park-and-clarke-inverse-clarke-transformations-mss-software-implementation-user-guide, 2013.
    [39] Texas Instruments, “Clarke & Park Transforms on the TMS320C2xx,” [Online]. Available: http://www.ti.com/lit/an/bpra048/bpra048.pdf, 1997.
    [40] K. Leban, C. Lascu, and A. Argeseanu, “Implementation of Space Vector Modulation Strategies for Voltage Source Inverters for Induction Motor Drives.” Report, Politehnica University of Timisoara.
    [41] M. Żelechowski, “Space Vector Modulated–Direct Torque Controlled (DTC-SVM) Inverter–Fed Induction Motor Drive,” Rozprawa Doktorska, Warszawa, 2005.
    [42] G. Chen, J. Kang, and J. Zhao, “Study on A New Hybrid Random Space Vector Pulse Width Modulation Strategy,” Information Technology Journal, vol. 13, no. 5, pp. 816, 2014.
    [43] Z. Mihailovic, “Modeling and Control Design of VSI-FED PMSM Drive Systems with Active Load,” M.S Thesis, Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 1998.
    [44] R. Stone. "Implementation of Space Vector Modulation (SVM ) Inveter," [Online]. Available: http://electrotech4u.blogspot.tw/2011/07/implementation-of-space-vector.html.

    無法下載圖示 校內:2025-12-31公開
    校外:2025-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE