| 研究生: |
何韋志 Ho, Wei-Chih |
|---|---|
| 論文名稱: |
介白素二十第二型接受器在肝疾病的研究 The Study of IL-20 receptor 2 in Liver Disease |
| 指導教授: |
張明熙
Chang, Ming-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 介白素-20第二型接受器 、肝纖維化 |
| 外文關鍵詞: | IL-20R2, Liver fibrosis |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝臟疾病如脂肪性肝炎和肝纖維化是全世界造成罹病以及死亡的重要疾病之一。肝纖維化是指因為不斷有新的纖維蛋白形成,使得過多的細胞外基質沈積在肝臟中,最後可能造成肝硬化的產生。IL-20第二型接受器 (IL-20R2)除了可以和IL-20第一型接受器 (IL-20R1)形成二聚體,接受IL-19/20/24之外,另外也可以和IL-22第一型接受器 (IL-22R1)形成二聚體,接受IL-20/24。由於先前的研究顯示,IL-20在肝纖維化中是扮演一個促發炎的角色,而且IL-20R1基因剔除小鼠具有抵抗CCl4所誘導肝損傷的能力,因此,在本次研究將更進一步探討IL-20R2基因剔除小鼠在肝疾病中所扮演的角色。從結果發現,利用TAA誘導短期小鼠肝損傷模式後,IL-20R2基因剔除小鼠會產生比野生型小鼠更嚴重的肝損傷,例如:更高的血清麩草醋酸轉胺脢 (AST),麩丙酮酸轉胺脢 (ALT)和膽紅素 (Bilirubin)數值,更大的肝臟壞死區域,較低的存活率以及增加促發炎激素的表現。IL-20R2基因剔除小鼠在由TAA或CCl4所誘導的長期小鼠肝損傷模式中也可以觀察到類似的現象。此外,在高脂食物所誘導的小鼠代謝性肝損傷模式中,IL-20R2基因剔除小鼠相較於野生型小鼠,同樣也會展現更高的血清麩草醋酸轉胺脢 (AST)和麩丙酮酸轉胺脢 (ALT)數值,另外還會出現更嚴重的脂肪性肝炎。因為出乎意料地發現IL-20R1與IL-20R2基因剔除小鼠之間所產生截然不同的效果,所以我們就想更進一步探討是否IL-24可能在肝臟疾病中扮演角色。在TAA誘導短期小鼠肝損傷模式中,利用肌肉內電擊的方式將pcDNA3.1-mIL-24質體送入老鼠體內,使其表現IL-24蛋白後,發現相較於空載體控制組 (Empty Vector),可以顯著降低血清麩草醋酸轉胺脢 (AST)和麩丙酮酸轉胺脢 (ALT)數值,減少肝臟壞死的區域,增加老鼠的存活率以及降低促發炎激素的表現。利用直接給予老鼠腹腔注射IL-24蛋白的方式,在TAA所誘導的短期小鼠肝損傷模式中也可以觀察到相同的現象。綜合上述的實驗結果,我們認為IL-20R1與IL-20R2基因剔除小鼠之間會產生截然不同的效果是由於缺乏IL-24所誘發的訊息傳遞所造成,而IL-24在肝臟疾病中可能是扮演一個保護性的角色。
Liver diseases such as hepatic steatosis and liver fibrosis, are important causes of morbidity and mortality worldwide. Liver fibrosis is defined as the presence of excess extracellular matrix deposition due to new fibrin formation, which may finally result in cirrhosis of the liver. IL-20 receptor (R)2 can dimerize with IL-20R1 to form the receptors for IL-19, IL-20 and IL-24, whereas IL-20R2 also can dimerize with IL-22R1 to form the receptors for IL-20 and IL-24. Our previous study indicated that IL-20 acts as a proinflammatory cytokine in liver fibrosis. IL-20R1-deficient mice were protected from CCl4-induced liver injury. Therefore, we were aimed to investigate the role of IL-20R2-deficient mice in liver disease. However, we found that IL-20R2 deficiency induced more severe effects in liver compared to wild-type mice under short-term thioacetamide (TAA)-induced liver injury. We demonstrated higher serum AST, ALT, and bilirubin levels, increasing necrosis area of liver, reducing survival rate, and up-regulating pro-inflammatory cytokine expression in IL-20R2-deficient mice. The similar phenomenon was found in long-term TAA- and CCl4- treated IL-20R2-deficient mice. In high-fat diet-induced metabolic liver injury, IL-20R2-deficient mice also showed higher serum ALT and AST, and had more severe hepatic steatosis compared with wild-type mice. Because of the unexpected opposite effects between IL-20R1- and IL-20R2-deficient mice, we further investigated whether IL-24 may play a role in liver disease. In short-term TAA-induced liver injury model, intramuscular electroporation of pcDNA3.1-IL-24 plasmid DNA significantly reduced serum AST/ALT, decreased necrosis area of liver, increased survival rate, and down-regulated pro-inflammatory cytokine expression compared to intramuscular electroporation of pcDNA3.1 empty vector. The similar phenomenon was found in recombinant mIL-24 protein treated mice in short-term TAA-induced liver injury model. Taken together, our data supposed that the opposite effects between IL-20R1- and IL-20R2-deficient mice might attribute to the deficiency of IL-24-induced signaling pathway. Therefore, IL-24 may play a protective role in liver disease.
1. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104: 9-19 (2001).
2. Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC, Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 167: 3545-3549 (2001).
3. Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, et al. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 277: 47517-47523 (2002).
4. Nagalakshmi ML, Murphy E, McClanahan T, de Waal Malefyt R, Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization. Int Immunopharmacol 4: 577-592 (2004).
5. Wei CC, Chen WY, Wang YC, Chen PJ, Lee JY, et al. Detection of IL-20 and its receptors on psoriatic skin. Clin Immunol 117: 65-72 (2005).
6. Chen WY, Cheng BC, Jiang MJ, Hsieh MY, Chang MS, IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 26: 2090-2095 (2006).
7. Hsu YH, Chang MS, Interleukin-20 antibody is a potential therapeutic agent for experimental arthritis. Arthritis Rheum 62: 3311-3321 (2010).
8. Li HH, Cheng HH, Sun KH, Wei CC, Li CF, et al. Interleukin-20 targets renal mesangial cells and is associated with lupus nephritis. Clin Immunol 129: 277-285 (2008).
9. Wei CC, Li HH, Hsu YH, Hsing CH, Sung JM, et al. Interleukin-20 targets renal cells and is associated with chronic kidney disease. Biochem Biophys Res Commun 374: 448-453 (2008).
10. Hsu YH, Chen WY, Chan CH, Wu CH, Sun ZJ, et al. Anti-IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. J Exp Med 208: 1849-1861 (2011).
11. Wei CC, Hsu YH, Li HH, Wang YC, Hsieh MY, et al. IL-20: biological functions and clinical implications. J Biomed Sci 13: 601-612 (2006).
12. Hsu YH, Li HH, Hsieh MY, Liu MF, Huang KY, et al. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum 54: 2722-2733 (2006).
13. Li HH, Hsu YH, Wei CC, Lee PT, Chen WC, et al. Interleukin-20 induced cell death in renal epithelial cells and was associated with acute renal failure. Genes Immun 9: 395-404 (2008).
14. Hsu YH, Hsing CH, Li CF, Chan CH, Chang MC, et al. Anti-IL-20 monoclonal antibody suppresses breast cancer progression and bone osteolysis in murine models. J Immunol 188: 1981-1991 (2012).
15. Chiu YS, Wei CC, Lin YJ, Hsu YH, Chang MS, IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology 60: 1003-1014 (2014).
16. Friedman SL, Liver fibrosis -- from bench to bedside. J Hepatol 38 Suppl 1: S38-53 (2003).
17. Van de Bovenkamp M, Groothuis GM, Meijer DK, Olinga P, Liver fibrosis in vitro: cell culture models and precision-cut liver slices. Toxicol In Vitro 21: 545-557 (2007).
18. Friedman SL, Mechanisms of hepatic fibrogenesis. Gastroenterology 134: 1655-1669 (2008).
19. Gines P, Cardenas A, Arroyo V, Rodes J, Management of cirrhosis and ascites. N Engl J Med 350: 1646-1654 (2004).
20. Liedtke C, Luedde T, Sauerbruch T, Scholten D, Streetz K, et al. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenesis Tissue Repair 6: 19 (2013).
21. Friedman SL, Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88: 125-172 (2008).
22. Gressner AM, Weiskirchen R, Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med 10: 76-99 (2006).
23. Corazza N, Badmann A, Lauer C, Immune cell-mediated liver injury. Semin Immunopathol 31: 267-277 (2009).
24. Bataller R, Brenner DA, Liver fibrosis. J Clin Invest 115: 209-218 (2005).
25. Ramachandran P, Iredale JP, Liver fibrosis: a bidirectional model of fibrogenesis and resolution. Qjm 105: 813-817 (2012).
26. Clouzeau-Girard H, Guyot C, Combe C, Moronvalle-Halley V, Housset C, et al. Effects of bile acids on biliary epithelial cell proliferation and portal fibroblast activation using rat liver slices. Lab Invest 86: 275-285 (2006).
27. Hajovsky H, Hu G, Koen Y, Sarma D, Cui W, et al. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem Res Toxicol 25: 1955-1963 (2012).
28. Kang JS, Wanibuchi H, Morimura K, Wongpoomchai R, Chusiri Y, et al. Role of CYP2E1 in thioacetamide-induced mouse hepatotoxicity. Toxicol Appl Pharmacol 228: 295-300 (2008).
29. Ding Z, Zhuo L, Attenuation of hepatic fibrosis by an imidazolium salt in thioacetamide-induced mouse model. J Gastroenterol Hepatol 28: 188-201 (2013).
30. Starkel P, Leclercq IA, Animal models for the study of hepatic fibrosis. Best Pract Res Clin Gastroenterol 25: 319-333 (2011).
31. Zou Y, Li J, Lu C, Wang J, Ge J, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci 79: 1100-1107 (2006).
32. Caudell EG, Mumm JB, Poindexter N, Ekmekcioglu S, Mhashilkar AM, et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol 168: 6041-6046 (2002).
33. Zdanov A, Structural studies of the interleukin-19 subfamily of cytokines. Vitam Horm 74: 61-76 (2006).
34. Wang M, Tan Z, Zhang R, Kotenko SV, Liang P, Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem 277: 7341-7347 (2002).
35. Leath CA, 3rd, Kataram M, Bhagavatula P, Gopalkrishnan RV, Dent P, et al. Infectivity enhanced adenoviral-mediated mda-7/IL-24 gene therapy for ovarian carcinoma. Gynecol Oncol 94: 352-362 (2004).
36. Gupta P, Su ZZ, Lebedeva IV, Sarkar D, Sauane M, et al. mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacol Ther 111: 596-628 (2006).
37. Menezes ME, Bhatia S, Bhoopathi P, Das SK, Emdad L, et al. MDA-7/IL-24: multifunctional cancer killing cytokine. Adv Exp Med Biol 818: 127-153 (2014).
38. Amirzada MI, Jin J, Therapeutic Applications of Interleukin 24 (IL24): A Review. Tropical Journal of Pharmaceutical Research 11 (2013).
39. Ramadori G, Moriconi F, Malik I, Dudas J, Physiology and pathophysiology of liver inflammation, damage and repair. J Physiol Pharmacol 59 Suppl 1: 107-117 (2008).
40. Liu Y, Meyer C, Xu C, Weng H, Hellerbrand C, et al. Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver Physiol 304: G449-468 (2013).
41. Xu ZJ, Fan JG, Ding XD, Qiao L, Wang GL, Characterization of high-fat, diet-induced, non-alcoholic steatohepatitis with fibrosis in rats. Dig Dis Sci 55: 931-940 (2010).
42. Adam R, Hoti E, Liver transplantation: the current situation. Semin Liver Dis 29: 3-18 (2009).
校內:2025-12-31公開