簡易檢索 / 詳目顯示

研究生: 林彥伶
Lin, Yen-Ling
論文名稱: 可降解型鎂鋅合金機械性質與生醫應用特性研究
A Study of Mechanical Properties and Biomedical Characteristics of Degradable Mg-Zn Alloy
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Traun-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: 鎂合金生物降解熱處理表面塗層細胞實驗
外文關鍵詞: Mg alloy, biodegradable, heat treatment, surface coating, cell experiment
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂合金植入醫材由於具備生物降解特性,且生成的物質能被生物體吸收並排出體外,從而避免二次手術取出,能減輕病人的負擔與手術風險。與傳統金屬骨修復材料鈦合金與不鏽鋼相比,鎂合金的基本機械性質與骨組織最為相近,能夠避免應力屏蔽效應。另外,鎂合金具有良好的生物相容性,且其降解的成分能夠誘導新生骨生成,是理想骨修復材料。目前鎂植入材面臨降解速率過快導致產生大量氫氣聚集於植入周圍因而引發發炎。若透過添加合金元素能夠增強鎂合金的機械力學並得到合適的降解速率,故本研究添加鋅、鋯元素來強化其機械性質與緩和降解速度。
    為了改善鎂合金的快速降解性,本研究對鎂鋅鋯合金以380℃-2hr鈍化熱處理在表面生成一層氧化膜,並在表面製備一層單元不飽和脂肪酸塗層,以降低降解速率並提高表面的生物相容性。在拉伸試驗中顯示,鈍化熱處理能夠有效提升材料延性。為評估力學性能的衰退速度,進行浸泡實驗後的拉伸試驗,結果顯示材料延性與強度會隨著浸泡時間而逐漸衰減,但鈍化熱處理材料衰減程度低於原材,並能在浸泡四周後仍維持較佳的強度與延性。鈍化熱處理可使得材料內部均質化,並且在表面生成氧化膜以減緩降解速率;而單元不飽和脂肪酸塗層能阻擋鎂合金與溶液產生反應亦能提高抗腐蝕能力。細胞毒性與細胞貼附實驗結果中,單元不飽和脂肪酸塗層在細胞增生的表現為最為優秀,而鈍化熱處理稍差,但兩者皆具有良好的生物相容性。此外,在細胞貼附實驗中,單元不飽和脂肪酸塗層在初期貼附中細胞很快就有觸手生成,說明塗層亦對於促進細胞貼附具有優勢。
    最終,進行體內測試-蘭嶼豬動物實驗,將鎂鋅鋯合金透過擠型並切削成中空埋頭式雙螺紋骨釘,再進行380℃-2hr鈍化熱處理後,植入蘭嶼豬左前肢。植入試驗十六周後,由於鎂合金降解,所以機械性質降低,無法緊實牢固癒合傷口,因此新生骨癒合現象不顯著,但前肢功能性完全,在植入測試四周時,豬隻已能正常行走。
    本研究經由表面改質後,可以使鎂鋅鋯合金骨釘不僅有良好的降解性、細胞貼附與細胞增生等性質,亦能減緩力學性質的衰退速度,並在植入生物體後透過降解免於二次手術取出,相關成果具臨床應用潛力。

    Due to the biodegradation characteristics of magnesium alloy implanted medical materials, the generated materials can be absorbed by organisms and removed out of the body, so as to avoid the second operation and reduce the burden of patients and surgical risks. Currently, magnesium implants degrade too rapidly, resulting in a buildup of hydrogen around the implants that can cause inflammation. In this study, zinc and zirconium were added to enhance the mechanical properties and ease the degradation rate of magnesium alloys.
    In the study, a layer of oxide film was formed on the surface of Mg-Zn-Zr alloy by heat treatment 380℃-2hr, and a layer of monounsaturated fatty acid coating was prepared on the surface to reduce the degradation rate and improve the biocompatibility of the surface. Passivation heat treatment can slow down the degradation rate. The monounsaturated fatty acid coating can prevent magnesium alloy from reacting with solution and improve corrosion resistance. The results of cytotoxicity and cell adhesion showed that the monounsaturated fatty acid coating showed the best performance in cell proliferation. In the cell adhesion experiment, the monounsaturated fatty acid coating was quickly generated by tentacles in the initial adhesion, indicating that the coating also had advantages in promoting cell adhesion.
    Finally, in animal experiments, after 16 weeks of magnesium alloy implantation test, although the new bone healing was not significant, the forelimbs were fully functional, and the pigs could walk normally at four weeks of implantation test.

    中文摘要 III 英文摘要 V 致謝 XII 總目錄 XIV 表目錄 XVIII 圖目錄 XIX 第一章 前言 1 第二章 文獻回顧 3 2-1生物醫用材料 3 2-1-1生物醫用植入材料 3 2-1-2生物可降解材料 4 2-2生醫用鎂合金材料特性 5 2-3 生醫用鎂合金材料應用限制 6 2-4鎂合金分類記號規範及意義 7 2-5鎂合金元素添加效應 7 2-5-1鋅 8 2-5-2鋯 8 2-6鎂合金表面處理技術 9 2-7 鎂合金加工 10 2-8細胞實驗 11 2-9動物實驗 11 2-10研究目的 13 第三章 實驗方法與步驟 20 3-1 實驗架構 20 3-2 微觀組織觀察 20 3-3 相組成分析 21 3-4 機械性質試驗 21 3-4-1硬度試驗及拉伸試驗 21 3-4-2衝擊試驗 21 3-5表面塗層處理 22 3-6電化學試驗 22 3-6-1試片備製 22 3-6-2模擬體液 ( Simulated body fluid, SBF ) 22 3-6-3動電位極化曲線試驗 23 3-7浸泡測試 23 3-8浸泡後機械性質試驗 24 3-8-1浸泡後拉伸 24 3-8-2浸泡後衝擊 24 3-9細胞相容性試驗 25 3-9-1毒性測試 25 3-9-2貼附試驗 26 3-10動物試驗 26 第四章 結果與討論 35 4-1材料組織分析 35 4-1-1微觀組織觀察 35 4-1-2 H材鈍化皮膜分析 35 4-1-3 X光繞射光譜分析 36 4-1-4硬度測試 36 4-1-5表面塗層分析 36 4-2體外降解機制與後機械性質 37 4-2-1動電位極化曲線試驗 37 4-2-2 0.9 wt.% NaCl(aq) & SBF之浸泡試驗 38 4-2-3浸泡後拉伸試驗 41 4-2-4浸泡後衝擊試驗 42 4-3鎂合金骨釘組織分析 44 4-3-1微觀組織觀察 44 4-3-2浸泡試驗 44 4-4體外細胞相容性 45 4-4-1生物毒性測試 45 4-4-2生物貼覆測試 46 4-5生物體植入試驗 47 第五章結論 94 參考文獻 96

    1. Zheng, Y. F., Gu, X. N., and Witte, F. Biodegradable metals. Materials Science and Engineering: R: Reports77 (2014)1-34.
    2. Navarro, M.,Michiardi, A., Castano, O., Biomaterials in orthopaedics. Journal of the Royal Society Interface5.27 (2008) 1137-1158.
    3. Cao, W., and Hench, L. L Bioactive materials. Ceramics international22.6 (1996) 493-507.
    4. Suchanek, W., and Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research13.1 (1998) 94-117.
    5. Hench, L. L., and Polak, J. M. Third-generation biomedical materials. Science295.5557 (2002)1014-1017.
    6. E. PayrBeiträge zur Technik der Blutgefäss- und Nervennaht nebst Mittheilungen über die Verwendung eines resorbirbaren Metalles in der Chirurgie Arch Klin Chir, 62 (1900) 67-93
    7. Staiger, M.P., Pietak, A. M., Huadmai, J., Its alloys as orthopedic biomaterials: a review Biomaterials, 27 (2006) 1728-1734
    8. P.E. DeGarmoMaterials and processes in manufacturing (5th ed), Collin Macmillan, New York (1979)
    9. Ilich, J. Z.and Kerstetter, J. E., Nutrition in bone health revisited: A story beyond calcium. Journal of the American College of Nutrition(2000).19(6)715-737.
    10. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes.Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press (US), (1997).
    11. J. Vormann, Control of biodegradation of biocompatable magnesium alloys, Corrosion Science,Volume 49,Issue 4, April (2007)1696-1701
    12. H. Zreiqat, C.R. Howlett, A. Zannettion, P. Evans, G. Schulze-Tanzil, C. Knabe J. Biomed. Mater. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants Res., 62 (2002)175
    13. Nagels, J., Stokdijk, M., andRozing, P. M."Stress shielding and bone resorption inshoulder arthroplasty."Journal of shoulder and elbow surgery12.1 (2003)35-39.
    14. N.E. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, A. LewenstamMagnesium. An update on physiological, clinical and analytical aspects Clin Chim Acta, (2000)1-26
    15. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, et al.In vivo corrosion of four magnesium alloys and the associated bone response Biomaterials, (2005)3557-3563
    16. A. LambotteL’utilisation du magnesium comme materiel perdu dans l’osteosynthèse Bull Mém Soc Nat Chir, (1932)1325-1334
    17. V.V. Troitskii, D.N. TsitrinThe resorbing metallic alloy ‘Osteosinthezit’ as material for fastening broken bone Khirurgiia, (1944) 41-44
    18. Avedesian, M. M., and Baker, H.,eds.ASM specialty handbook: magnesium and magnesiumalloys. ASM international, (1999)
    19. Mjoberg, B., Hellquist, E., Mallmin, H., W., Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy, Corrosion Science, (2000)42(8) 1433-1455.
    20. Zhang,S. X., Zhang, X. N.,Zhao, C. L., Li, J. Song, Y., Xie, C. Y., Tao, H., Research on an Mg-Zn alloys as a degradable biomaterial. Acta Biomaterialia, (2010)6(2) 626-640.
    21. Cai,S. H., Lei, T.,Li N.,Effects of Zn on microstructure,mechanical properties and corrosion behavior of Mg-Zn alloys, Materials Science & Engineering C-Materials for Biological Application, (2012) 32(8) 2570-2577
    22. Gandel, D. S., Easton, M. A., Gibson, M. A., Abbott, T., and Birbilis, N. "The influence of zirconium additions on the corrosion of magnesium."Corrosion Science81 (2014)27-35
    23. Avedesian, M. M., and Baker, H.,eds.ASM specialty handbook: magnesium and magnesiumalloys. ASM international, (1999)
    24. Li N, Zheng Y. Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol. (2013)29(6)489–502.10.1016/j.jmst.2013.02.005
    25. Huan Z.G., Leeflang M.A., In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. J Mater Sci: Mater Med. (2010)21(9)2623–2635.
    26. Sun, M., Wu, G., Wang, W., and Ding, W. "Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy."Materials Science and Engineering: A523.1-2 (2009)145-151.

    27. Hirai, K., Somekawa, H., Takigawa, Y., and Higashi, K. "Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature."Materials Science and Engineering: A403.1-2 (2005) 276-280.
    28. Zhang, E., and Yang, L. "Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application."Materials Science and Engineering: A497.1-2 (2008) 111-118.
    29. S. Hiromoto, A. YamamotoControl of degradation rate of bioabsorbable magnesium by anodization and steam treatment Mater Sci Eng C, 30 (2010)1085-1093
    30. J. Li, Y. Song, S. Zhang, C. Zhao, F. Zhang, X. Zhang, et al.In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable MgZn alloy Biomaterials, 31 (2010)5782-5788
    31. K. Chiu, M. Wong, F. Cheng, H. ManCharacterization and corrosion studies of fluoride conversion coating on degradable Mg implants Surf Coat Technol, 202 (2007)590-598
    32. Terés S, Barceló-Coblijn G, Benet M, Alvarez R, Bressani R, Halver JE, Escribá PV.,Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci U S A. (2008) Sep 16;105(37)13811-6. doi: 10.1073
    33. Sales Campos H, Souza PR, Peghini BC, da Silva JS, Cardoso CR.An overview of modulatory effects of oleic acid in health and disease. Mini Rev Med Chem. (2013) Feb;13(2)201-10.
    34. Klocke F, Schwade M, Klink A, et al. EDM machining capabilities of magnesium (Mg) alloy WE43 for medical applications. Procedia Eng. (2011)19:190–195.10.1016/j.proeng.2011.11.100
    35. Lambotte A: Lutilisation du magnesium comme materiel perdu dans losteosynthese ,The use of magnesium as material for osteosynthesis. Bull Mem Soc Nat Chir 28, (1932)1325–1334
    36. McBride ED: Absorbable metal in bone surgery. JAMA 111, (1938) 2464–2467
    37. Sanchez AH, Luthringer BJ, Feyerabend F, Willumeit R: Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater 13, (2015) 16–31
    38. H. R. Bakhsheshi-Rad, E. Hamzah, M. Medraj, M. H. Idris, A. F. Lotfabadi, M. Daroonparvar and M. A. M. Yajid, Effect of heat treatment on the microstructure and corrosion behaviour of Mg–Zn alloys, Materials and Corrosion (2014) 65, No. 10 DOI: 10.1002/maco.201307492
    39. Niinomi, M . "Recent metallic materials for biomedical applications." Metallurgical and materials transactions A 33.3 (2002)477 486
    40. A. Rohman & Y.B. Che Man, Application of FTIR Spectroscopy for Monitoring the Stabilities of Selected Vegetable Oils During Thermal Oxidation, International Journal of Food Properties, ISSN: 1094-2912 (Print) 1532-2386
    41. Zhao, X.; Shi, L.; Xu, J. Mg-Zn-Y alloys with long-period stacking ordered structure: In vitro assessments of biodegradation behavior. Mater. Sci. Eng. C (2013)33, 3627–3637.
    42. Lederer, S.; Lutz, P.; Fürbeth, W. Surface modification of Ti 13Nb 13Zr by plasma electrolytic oxidation. Surf. Coat. Technol.(2018)335, 62–71.
    43. Yunchang Xin, KaifuHuo, HuTao, GuoyiTang, Paul K.Chu, Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment, Acta Biomaterialia Volume 4, Issue 6, November (2008)2008-2015
    44. Fung, Y.C.Biomechanics: mechanical properties of living tissues. Springer Science & Business Media, (2013).
    45. Huan Z.G., Leeflang M.A., Zhou J., Fratila-Apachitei L.E., Duszczyk J. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. J. Mater. Sci. Mater. Med. (2010)21:2623–2635.

    無法下載圖示 校內:2024-08-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE