| 研究生: |
邱啟偉 Chiu, Chi-Wei |
|---|---|
| 論文名稱: |
輕油裂解廠節能技術之研究 Study On Energy Conservation of Naphtha Cracker |
| 指導教授: |
吳榮華
Wu, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 輕油裂解廠 、乙烯生產 、單位能源消耗 |
| 外文關鍵詞: | Naphtha Cracker, Ethylene Production, Specific Energy Consumption |
| 相關次數: | 點閱:123 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乙烯為石化工業中最重要之基礎原料。我國之乙烯主要由輕油裂解廠所生產,其進料來自煉油廠或國外進口,主要成分由石油腦(Naphtha)、C3/C4 LPG、C5/C6等輕烴混和而成,經過高溫裂解以及蒸餾分離後生產出乙烯、丙烯等主產品及其他副產品。
由於環保法規以及我國可供規劃設置石化專區的土地受限,已無法於產量方面與他國競爭,但對於生產管理、能源管理方面,仍尚有一定經驗與水準。台灣地區自主能源較為匱乏,主要仰賴進口。石化工業中,蒸汽裂解生產乙烯是能源最密集的製程,觀測一座輕油裂解廠的生產表現良窳,主要可透過乙烯的單位能源消耗(Specific Energy Consumption, SEC)加以評估。
本研究收集商業運轉中之個案輕油裂解廠,選取其穩定操作區間乙烯單位能耗成果進行分析,首先了解乙烯生產單位能耗的組成以利未來能耗管理的著重點為何?另透過「操作管理層面」改善裂解爐的操作穩定度、增加操作週期、減少退出裂解爐除焦操作次數,進而達到節省公用物料的方法,提供未來節能改善規劃之建議。
本研究提出的操作管理方法,平均可以將每一座裂解爐的操作天數由60天拉長到90天左右,每年可減少的裂解爐除焦次數12.2次,在不增加任何投資以及工程改善的前提下,總節省能耗為1,738,073 Kgoe,每年約可節省燃料費用達6808萬元;換算乙烯單位生產能耗降低2.17 Kgoe/ton。
關鍵字:輕油裂解廠、乙烯生產、單位能源消耗
Ethylene is the major product in terms of production volume of the petrochemical industry. Ethylene production in Taiwan is mainly by naphtha crackers. The feedstock of naphtha crackers comes from local refineries or from other countries, composed of naphtha, LPG and C5. Through high temperature cracking , separation and distillation processes, main products such as ethylene, propylene and other by-products are produced.
Due to strict environmental protection regulations and the limited land available in Taiwan, though it is difficult to compete with other countries in terms of production capacity, Taiwan has the strength of experience and management skill. Taiwan is relatively short of self-contained energy and mainly relies on imports.
Ethylene production by steam cracking is the most energy-intensive process in petrochemical industries. The best way to evaluate the performance of naphtha cracker is to see whether it observes the specific energy consumption.
This study collects data from a commercial operation naphtha cracker and selects a period of stable operation. First of all, we must understand the composition of the specific energy consumption of ethylene production to facilitate future energy management. The target is to improve the operational stability of the cracking furnace, prolong the operation period of cracking furnace and reduce the number of decoking operations to save utility materials. More ideas of energy-saving improvement is expected in the future.
The operation management method proposed in this study can extend the average operating days of each cracking furnace from 60 days to about 90 days and can reduce the number of cracking furnace decoking by 12.2 times per year. Without any increase in investment and engineering improvement the total energy saving is 1,738,073 Kgoe, and the specific energy consumption of ethylene production per ton is reduced by 2.17 Kgoe/ton. Approximately fuel costs of 68.08 million dollars can be saved respectively.
一、 英文文獻
1. Adam Karaba, Veronika Dvořakova, Jan Patera, Petr Zamostny,(2020) .Improving the steam-cracking efficiency of naphtha feedstocks by mixed/separate processing.Journal of Analytical and Applied Pyrolysis 146 (2020) 104768
2. Ana Carolina C. Viana, Ricardo A. Kalid(2005). Pyrolisys furnaces optimization-Effect of Dilution Steam and hydrocarbon ratio(DS/HC). 2nd Mercosur Congress on Chemical Engineering & 4th Mercosur Congress on Process System Engineering.
3. Chen Jing-Ming, Yu Biying, Wei Yi-Ming.(2018). Energy technology roadmap for ethylene in China. Applied Energy 224(2018)160-174.
4. Ernest Worrell, Dian Phylipsen, Dan Einstein, and Nathan Martin (2000). Energy Use and Energy Intensity of the U.S. Chemical Industry. Office of Air and Radiation, U.S. Environmental Protection Agency through the U.S. Department of Energy under Contract No.DE-AC03-76SF00098.
5. Karimi H, Olayiwola B, Farag H, McAuley KB. (2019). Modelling coke formation in an industrial ethane-cracking furnace for ethylene production. Can J Chem Eng. (2020)98:158–171.
6. Meng Di, Shao Cheng, Zhu Li (2018).Ethylene cracking furnace TOPSIS energy efficiency evaluation method based on dynamic energy efficiency baselines. Energy 156(2018) 620-634.
7. Meng Di, Shao Cheng, Zhu Li (2021).Two-Level comprehensive energy-efficiency quantitative diagnosis scheme for ethylene-cracking furnace with multi-working-condition of fault and exception operation. Energy 239(2022)121835
8. Miroslav Variny, Kristián Hanus, Marek Blahušiak, Patrik Furda, Peter Illés and Ján Janošovský.(2021). Energy and environmental assessment of steam management optimization in an ethylene plant. Int. J. Environ. Res.Public Health( 2021), 18, 12267.
9. Mohammad Fakhroleslam and Seyed Mojtaba Sadrameli.(2020). Thermal cracking of Hydrocarbons for the production of light olefins; A review on optimal process design, operation, and control. Ind. Eng. Chem. Res. (2020), 59, 12288−12303
10. Ramsagar Vooradi, Sarath Babu Anne, Anjan K. Tula, Mario R. Eden, and Rafiqul Gani. ( 2019). Energy and CO2 management for chemical and related industries: issues, opportunities and challenges.Vooradi et al. BMC Chemical Engineering (2019) 1:7
11. S.M. Sadrameli (2015). Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review. Fuel 140 (2015) 102-115.
12. S. Seifzadeh Haghighi, M.R. Rahimpour, S. Raeissi, O. Dehghani. (2013). Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide. Chemical Engineering Journal 228 (2013) 1158–1167
13. Steffen H. Symoens, Natalia Olahova, Andrés E. Muñoz Gandarillas, Hadiseh Karimi, Marko R. Djokic, Marie-Françoise Reyniers, Guy B. Marin, and Kevin M. Van Geem. (2018). State-of-the art of coke formation during steam cracking: Anti-coking surface technologies. Ind. Eng. Chem. Res. (2018), 57, 16117−16136
14. Wasamon Chuapet, Nantamol Limphitakphong, Thanapol Tantisattayakul3, Premrudee Kanchanapiya4 and OrathaiChavalparit1, Tantisattayakul(2016)”A Study of Energy Intensity and Carbon Intensity from Olefin Plants in Thailand.”
15. Zahra Gholami and Mohammadtaghi VakiliA (2021). A Review on the Production of Light Olefins Using Steam Cracking of Hydrocarbons. Energies (2021). 14, 8190.
16. Zhao Hao, Marianthi G. lerapetritou, Rong Gang.(2016)Production planning optimization of an ethylene plant considering process operation and energy utilization. Comuters and Chemical Engineering 87(2016)1-12.
二、 中文文獻
1. 中國國家標準GB-30250。乙烯裝置單位產品能源消耗限額。
2. 王子宗、王振維(2022)。乙烯裝置分離工藝與工程。中國石化出版社
3. 台灣經濟研究院產經資料庫(2021/11)。行政院主計處中華民國行業標準分類。
4. 台灣經濟研究院產經資料庫(2021/11)。經濟部統計處。2021年工廠校正及營運調查。
5. 李以霠、焦鴻文、魏增武(2013)。燃燒技術在石化工業的節能應用簡介。Combustion Quarterly Vol.22,No.1 Feb.2013
6. 曾繁銘(2013/11)。我國石化產業面臨的挑戰與未來發展。工研院產業經濟與趨勢研究中心(IEK)。
三、網路資料:
1. 台灣石化公會網站資料。Taiwan Petrochemical Industry Outlook 2019 https://www.ener8.com/taiwan-petrochemical-industry-outlook-2019/
2. Spyrotec https://www.spyrosuite.com/