| 研究生: |
李德璽 Lee, Te-Hsi |
|---|---|
| 論文名稱: |
多層量子井熱電與低頻率振動能源採集器之研究 Development of Multilayered Quantum Well Thermoelectric and Low Frequency Vibration Energy Harvesters |
| 指導教授: |
楊世銘
Yang, Shih-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 能源採集器 |
| 外文關鍵詞: | energy harvester |
| 相關次數: | 點閱:46 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單晶片整合之感測器節點將扮演下一代無線感測器網路應用之關鍵,其節點之系統設計中,小尺寸、長壽命、並可提供足夠功率的能源器最為關鍵,傳統蓄電池在如此嚴苛的設計條件下已不敷使用。微型能源採集器可轉換週遭環境之能源為可供網路節點所用之電能,並且不受使用壽命的限制,提供無線感測器節點之能源器可靠之解決方案。現今之網路節點包含計算與訊號處理等等之積體電路皆由先進之金氧半導體製程所實現,然而各種微型能源採集器近來雖已有許多研究成果,其設計與製程整合於先進金氧半導體製程之研究卻尚未被深入研究與實現。本論文提出可整合於金氧半導體製程之新式能源轉換器,以有效轉換廣泛散佈於環境中之熱能與振動供感測器節點所用。熱能轉換方面,本論文提出多層設計以及量子井結構之微型熱電轉換器,從元件構造以及材料熱電特性方面提升轉換器之輸出功率,並成功以金氧半導體製程實現,其元件之功率係數分別為0.0427 µW/cm2K2 和0.2510 µW/cm2K2,電壓係數分別為 3.417 V/cm2K和10.042 V/cm2K。振動轉換方面,本論文提出微型振動能源採集器之新式設計與製程,其元件可共振於大部分應用之低頻振動下以達到最大之輸出功率,並成功以金氧半導體製程相容製程實現,其元件在小面積9 mm2內具有改進之質量塊4.85 mg,可實現共振頻率105 Hz以及輸出功率0.0924 μW。本論文提出之新式能源轉換器相較於文獻結果具備高功率、高電壓、以及先進金氧半導體製程之整合性,將可應用於未來單晶片整合之無線感測器網路節點。
This work presents novel CMOS compatible energy harvesters for harvesting mechanical vibration and thermal gradient. Multilayered and quantum-well micro thermoelectric generators (ML-μTEG and QW-μTEG) are proposed for improving output power. Analyses show that the power and voltage factors can be improved by stacking multilayered thermolegs and adapting low-dimensional thermoelectric materials of μTEGs. The measured results demonstrate significant improvements of power factor 0.0427 µW/cm2K2 and voltage factor 3.417 V/cm2K for ML-TEG, and power factor 0.2510 µW/cm2K2 and voltage factor 10.042 V/cm2K for QW-TEG. Novel low-frequency resonant micro electrostatic generators (LR-μESG) are also proposed to harvest vibration at desired low frequency suitable for most applications. The proposed LR-μESG resonates at 105 Hz features a compact area of 9 mm2 with 4.85 mg proof mass, which converts 0.88 nJ per charge-constraint cycle and accordingly output power of 0.0924 μW. The proposed harvesters are successfully implemented to demonstrate CMOS compatibility for autonomous sensor nodes.
Abdolvand, R., Amini, B. V., and Ayazi, F., “Sub-Micro-Gravity In-Plane Accelerometers with Reduced Capacitive Gaps and Extra Seismic Mass,” Journal of Microelectromechanical Systems, Vol. 16, No. 5, pp. 1036–1043, 2007.
Akyildiz, I. F., Melodia, T., and Chowdhury, K. R., “A Survey on Wireless Multimedia Sensor Networks,” Computer Networks, Vol. 51, pp. 921–960, 2007.
Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E., “A Survey on Sensor Networks,” IEEE Communications Magazine, pp. 102–114, 2002.
Amirtharajah, R. and Chandrakasan, A. P., “Self-powered Signal Processing Using Vibration-based Power Generation,” IEEE Journal of Solid-State Circuits, Vol. 33, pp. 687–695, 1998.
Arakawa, Y., Suzuki, Y., and Kasagi, N., “Micro Seismic Power Generator Using Electret Polymer Film,” Power MEMS Conference, pp. 187–90, 2004
Balandin, A. and Wang, K. L., “Significant Decrease of the Lattice Thermal Conductivity due to Phonon Confinement in a Free-standing Semiconductor Quantum Well,” Phys. Rev. B, Vol. 58, pp. 1544–1549, 1998.
Barnhart, D. J., Vladimirova, T., and Sweeting, M. N., “Very-Small-Satellite Design for Distributed Space Missions,” Journal of Spacecraft and Rockets, Vol. 44, No. 6, pp. 1294–1306, 2007.
Bottner, H., “Thermoelectric Micro Devices: Current State, Recent Development and Future Aspects for Technological Progress and Applications,” Proc. IEEE 21st Int. Conf. Thermoelectrics (ICT’02), pp. 511–518, 2002.
Bottner., H., Nurnus, J., Gavrikov, A., Kühner, G., Jägle, M., Künzel, C., Eberhard, D., Plescher, G., Schubert, A., and Schlereth, K., “New Thermoelectric Components Using Microsystem Technologies,” Journal of Microelectromechanical Systems, Vol. 13, No. 3, pp. 414–420, 2004.
Broido D. A. and Reinecke, T. L., “Theory of Thermoelectric Power Factor in Quantum Well and Quantum Wire Superlattices,” Phys. Rev. B, Condens. Matter, Vol. 64, 045324, 2001.
Callaway, E., Gorday, P., Hester, L., Gutierrez, J. A., Naeve, M., Heile, B., and Bahl, V., “Home Networking with IEEE 802.15.4: A Developing Standard for Low-Rate Wireless Personal Area Networks,” IEEE Communications Magazine, pp. 70–77, 2002.
Casian, A., Sur, I., Sandu, A., Scherrer, H., and Scherrer, S., “Effect of One dimensional Quantum Structures on the Thermoelectric Figure of Merit,” Proceedings of the 16th International Conference on Thermoelectrics, ICT'97, pp. 442–445, 1997.
Chen, G., “Phonon Transport in Low-dimensional Structures,” Semicond. Semimet., Vol. 71, pp. 203–259, 2001.
Chen, G. and Shakouri, A., “Heat Transfer in Nanostructures for Solid-state Energy Conversion,” J. Heat Transf., Trans. ASME, Vol. 124, No. 2, pp. 242–252, 2002.
Cook, B. W., Lanzisera, S. and Pister, K. S. J., “SoC Issues for RF Smart Dust,” Proceedings of the IEEE, Vol. 94, No. 6, pp. 1177–1196, 2006.
Cook-Chennault, K. A., Thambi, N., and Sastry, A. M., “Powering MEMS Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems with Special Emphasis on Piezoelectric Energy Harvesting Systems,” Smart Material Structures, Vol. 17, 043001, 2008.
Despesse, G., Chaillout, J. J., Dekkaki, I., Jager, T., Léger, J. M., Vassilev, A., Basrour, S., and Charlot, B., “High Damping Electrostatic System For Vibration Energy Scavenging,” Technical Proceedings of the 2005 Nanotechnology Conference and Trade Show, Vol. 3, pp 371–374, 2005.
Doumit, S. S. and Agrawal, D. P., “Self-Organizing and Energy-Efficient Network of Sensors,” IEEE MILCOM Proceedings, pp. 1–6, 2002.
Dresselhaus, M. S., Lin, Y. M., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S. B., Koga, T., and Ying, J. Y., “Advances in 1-D and 2-D Thermoelectric Materials,” 18th Int. Conf. Thermoelectrics Proc., pp. 92–99, 1999.
Elvin, N. G., Lajnef, N., and Elvin, A. A., “Feasibility of Structural Monitoring with Vibration Powered Sensors,” Smart Mater. Struct., Vol. 15, pp. 977–986, 2006.
Ermolov, V., Heino, M., Kärkkäinen, A., Lehtiniemi, R., Nefedov, N., Pasanen, P., Radivojevic, Z., Rouvala, M., Ryhänen, T., Seppälä, E., and Uusitalo, M. A., “Significance of Nanotechnology for Future Wireless Devices and Communications,” Personal, Indoor and Mobile Radio Communications, IEEE 18th International Symposium on, pp. 1–5, 2007.
Enz, C. C., El-Hoiydi, A., Decotignie, J.-D., and Peiris, V., “WiseNET: An Ultralow-power Wireless Sensor Network Solution,” IEEE Computer, Vol. 37, No. 8, pp. 62−70, 2004.
Fleurial, J. P., Snyder, G. J., Herman, J. A., Giauque, P. H., Phillips, W. M., Ryan, M. A., Shakkottai, P., Kolawa, E. A., and Nicolet, M. A., “Thick-film Thermoelectric Microdevices,” Proceedings of the 18th International Conference on Thermoelectrics, pp. 294–300, 1999.
García-Hernández, C. F., Ibargüengoytia-González, P. H., García-Hernández, J., and Pérez-Díaz, J. A., “Wireless Sensor Networks and Applications a Survey,” IJCSNS International Journal of Computer Science and Network Security, Vol.7 No.3, pp. 264–273, 2007.
Ghosh, S. and Bayoumi, M., “On Integrated CMOS-MEMS System-on-Chip,” Inst. of Electrical and Electronics Engineers Paper, IEEE-NEWCAS Conference, pp. 31–34, 2005.
Glosch, H., Ashauer, M., Pfeiffer, U., and Lang, W., “A Thermoelectric Converter for Energy Supply,” Sensors and Actuators A, Vol. 74, pp. 246–250, 1999.
Graf, A., Arndt, M., Sauer, M., and Gerlach, G., “Review of Micromachined Thermopiles for Infrared Detection,” Meas. Sci. Technol., Vol. 18, pp. R59–R75, 2007.
Gutierrez, J. A., Naeve, M., Callaway, E., Bourgeois, M., Mitter, V., and Heile, B., “IEEE 802.15.4: A Developing Standard for Low-Power Low-Cost Wireless Personal Area Networks,” IEEE Network, Vol. 15, pp. 12–19, 2001.
Harman, T. C., Taylor, P. J., Walsh, M. P., and LaForge, B. E., “Quantum Dot Superlattice Thermoelectric Materials and Devices,” Science, Vol. 297, pp. 2229–2232, 2002.
Heinzelman, W. B., Murphy, A. L., Carvalho, H. S., Perillo, M. A., “Middleware to Support Sensor Network Applications,” IEEE Network, Vol. 18, pp. 6–14, 2004.
Hicks, L. D. and Dresselhaus, M. S., “Effect of Quantum-well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, Condens. Matter, Vol. 47, No. 19, pp. 12727–12731, 1993.
Hicks, L. D., Harman, T. C., Sun, X., and Dresselhaus, M. S., “Experimental Study of the Effect of Quantum-well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, Condens. Matter, Vol. 53, No. 16, pp. R10493–R104936, 1996.
Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G., “Cubic AgPb/SbTe2: Bulk Thermoelectric Materials with High Figure of Merit,” Science, Vol. 303, No. 5659, pp. 818–821, 2004.
Hudak, N. S., and Amatucci, G. G., “Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications,” Journal of Applied Physics, Vol. 103, 101301, 2008.
Kishi, M., Nemoto, H., Hamao, T., Yamamoto, M., Sudou, S., Mandai, M., and Yamamoto, S., “Micro-thermoelectric Modules and Their Application to Wristwatches as an Energy Source,” Proceedings of the 18th International Conference on Thermoelectrics, pp. 301–307, 1999.
Khitun, A., Balandin, A., and Wang, K. L., “Modification of the Lattice Thermal Conductivity in Silicon Quantum Wires due to Spatial Confinement of Acoustic Phonons,” Superlattices Microstruct., Vol. 26, pp. 181–193, 1999.
Khitun, A., Balandin, A., Wang, K .L., and Chen, G., “Enhancement of the Thermoelectric Figure of Merit of Si1−xGex Quantum Wires due to Spatial Confinement of Acoustic Phonons,” Physica E, Vol. 8, pp. 13–18, 2000.
Kockmann, N., Huesgen, T., and Woias, P., “Microstructured In-plane Thermoelectric Generators with Optimized Heat Path,” Tranceducers & Eurosensors ’07, pp. 133-136, 2007.
Lee, S. S. and White, R. M., “Self-excited Piezoelectric Cantilever Oscillators,” Proceedings of the Transducers 95/Eurosensors IX, pp. 41–45, 1995.
Leibowitz, B., Boser, B. E., and Pister, K., “CMOS ‘Smart Pixel’ for Free-space Optical communication,” Proceedings of the SPIE - The International Society for Optical Engineering, Vol. 4306A, pp. 308–318, 2001.
Leonov, V., Fiorini, P., Sedky, S., Torfs, T., and Van Hoof, C., “Thermoelectric MEMS Generator as a Power Supply for a Body Area Network,” Transducers ’05, pp.291–294, 2005.
Lhermet, H., Condemine, C., Plissonnier, M., Salot, R., Audebert, P., and Rosset, M., “Efficient Power Management Circuit: From Thermal Energy Harvesting to Above-IC Microbattery Energy Storage,” Journal of Solid-State Circuits, Vol. 43, pp.246–255, 2008.
Lin, Y.-M. and Dresselhaus, M. S., “Thermoelectric Properties of Superlattice Nanowires,” Phys. Rev. B, Condens. Matter, Vol. 68, 075304, 2003.
Mayer, P. M. and Ram, R. J., “Optimization of Heat Sink-Limited Thermoelectric Generators,” Nanoscale and Microscale Thermophysical Engineering, Vol. 10, No. 2, pp. 143–155, 2006.
Mehra, A., Zhang, X., Ayon, A. A., Waitz, I. A., Schmidt, M. A., and Spadaccini, C. M., “A Six-wafer Combustion System for a Silicon Micro Gas Turbine Engine,” Journal of Microelectromechanical Systems, Vol. 9, No. 4, pp. 517–526, 2000.
Meninger, S., Mur-Miranda, J. O., Amirtharajah, R., Chandrakasan, A. P., and Lang, J. H., “Vibration-to-electric Energy Conversion,” IEEE Transactions On Very Large Scale Integration (VLSI) Systems, Vol. 9, No. 1, pp. 64–76, 2001.
Min, R., Bhardwaj, M., Cho, S.-H., Ickes, N., Shih, E., Sinha, A., Wang, and A., Chandrakasan, A., “Energy-Centric Enabling Technologies for Wireless Sensor Networks,” IEEE Wireless Communications, pp. 28-39, 2002.
Mingo, N., “Thermoelectric Figure of Merit and Maximum Power Factor in III-V Semiconductor Nanowires,” Appl. Phys. Lett., Vol. 84, pp. 2652, 2004.
Mitcheson, P., Stark, B., Miao, P., Yeatman, E., Holmes and Green, T. C., “Analysis and Optimisation of MEMS On-chip Power Supply for Self Powering of Slow Moving Sensors,” Proc. Eurosensors XVII, pp 48–51, 2003.
Mitcheson, P. D., Green, T. C., Yeatman, E. M., and Holmes, A. S., “Architectures for Vibration-Driven Micropower Generators,” Journal of Microelectromechanical Systems, Vol. 13, No. 3, 2004.
Miyazaki, M., Tanaka, H., Ono, G., Nagano, T., Ohkubo, N., Kawahara T., and Yano, K., “Electric-energy Generation using Variable-capacitive Resonator for Power-free LSI: Efficiency Analysis and Fundamental Experiment,” Proceedings Int’l Symp. Low Power Electronics and Design, pp 193–198, 2003.
Nounou, A. and Ragaie, H. F., “A Lateral Comb-Drive Structure for Energy Scavenging,” Electrical, Electronic and Computer Engineering, International Conference on, pp. 553–556, 2004.
O'Flynn, B., Barroso, A., Bellis, S., Benson, J., Roedig, U., Delaney, K., Barton, J., Sreenan, C., and O’Mathuna1, C., “The Development of a Novel Miniaturized Modular Platform for Wireless Sensor Networks,” Proc. of IPSN Track on Sensor Platform, Tools and Design Methods for Networked Embedded Systems (IPSN2005/SPOTS2005), IEEE Computer Society Press, 2005.
Rabin, O., Herz, P. R., Lin, Y. M., Cronin, S. B., Akinwande, A. I., and Dresselhaus, M. S., “Arrays of Nanowires on Silicon Wafers,” Proc. 21st Int. Conf. Thermoelectrics (ICT’02), pp. 276–279, 2002.
Rowe, D. M., Ed., Handbook of Thermoelectrics, Second Edition, Orlando, FL: CRC Press, 2006.
Roundy, S., “Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion,” Ph.D. Thesis, University of California, Berkeley, 2003.
Roundy, S., Wright, P. K., and Rabaey, J., “A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes,” Computer Communications, Vol. 26, pp. 1131–1144, 2003.
Sanders, G. D., Stanton, C. J., and Chang, Y. C., “Theory of Transport in Silicon Quantum Wires,” Phys. Rev. B, Vol. 48, 11067, 1993.
Sato, N., Kuwabara, K., Ono, K., Sakata, T., Morimura, H., Terada, J., Kudou, K., Kamei, T., Yano, M., Machida, K., and Ishii, H., “Monolithic Integration Fabrication Process of Thermoelectric and Vibrational Devices for Microelectromechanical System Power Generator,” Japan Journal of Applied Physics, Vol. 46, pp. 6062–6067, 2007.
Shi, E. and Perrig, A., “Designing Secure Sensor Networks,” IEEE Wireless Communications, Vol. 11, No. 6, pp. 38–43, 2004.
Shakouri, A., “Thermoelectric, Thermionic and Thermophotovoltaic Energy Conversion,” Int. Conf. Thermoelectrics, pp. 492–497, 2005.
Sharp, J., Thompson, A., Trahey, L., and Stacy, A., “Measurement of Thermoelectric Nanowire Array Properties,” Proc. 24th Int. Conf. Thermoelectrics (ICT), pp. 83–86, 2005.
Shearwood, C. and Yates, R. B., “Development of an Electromagnetic Microgenerator,” Electronics Letters, Vol. 33, No. 22, pp. 1883–1884, 1997.
Shen, C.-C., Srisathapornphat, C., and Jaikaeo, C., “Sensor Information Networking Architecture and Applications,” Vol. 8, No. 4, IEEE Personal Communications, pp. 52–59, 2001.
Sim, W. Y., Kim, G. Y., and Yang, S. S., “Fabrication of Micro Power Source (MPS) Using a Micro Direct Methanol Fuel Cell (mDMFC) for the Medical Application,” Technical Digest MEMS 2001, pp. 341–344, 2001.
Snyder, G. J., Lim, J. R., Huang, C. K., and Fleurial, J. P., “Thermoelectric Microdevice Fabricated by a MEMS-like Electrochemical Process,” Nat. Mater., No. 2, pp. 528–531, 2003.
Spies, P., Pollak, M., and Rohmer, G., “Power Management for Energy Harvesting Applications,” Proceedings, 1st Annual nanoPower Forum (nPF), pp. 6–11, 2007.
Stordeur, M. and Stark, I., “Low Power µTEG—Self Sufficient Energy Supply for Micro Systems,” Proceedings of the 16th International Conference on Thermoelectrics, pp. 575–577, 1997.
Strasser, M., Aigner, R., Franosch, M., and Wachutka, G., “Miniaturized µTEGs Based on Poly-Si and Poly-SiGe Surface Micromachining,” Sensors and Actuators A, Vol. 97–98, pp. 535–542, 2002.
Strasser, M., Aigner, R., Lauterbach, C., Sturm, T. F., Franosch, M., and Wachutka, G., “Micromachined CMOS µTEG as On-chip Power Supply,” Sensors and Actuators A, Vol.114, pp. 362–370, 2004.
Sterken, T., Baert, K., Puers, R., and Borghs, S., “Power Extraction from Ambient Vibration,” Proceedings of Semiconductor Sensors, pp. 680–683, 2002.
Tummala, R. R., “SOP: What Is It and Why?” IEEE Trans. Advanced Packaging, Vol. 27, No. 2, pp. 241−249, 2004.
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B., “Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit,” Nature, Vol. 413, pp. 597–602, 2001.
Völklein, F., Min, G., and Rowe, D. M., “Modeling of a Microelectromechanical Thermoelectric Cooler,” Sensors and Actuators A, Vol. 75, pp. 95–101, 1999.
Von der Mark, S., Huber M., and Boeck, G., “Design Concepts and First Implementations for 24 GHz Wireless Sensor Nodes,” Journal of Communications, Vol. 2, No. 6, pp.1–5, 2007.
Wang, Z., Leonov, V., Fiorini, P., and Van Hoof, C., “Micromachined Thermocouples for Energy Scavenging on Human Body,” Proceedings of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 911–914, 2007.
White, B. E., “Energy-Harvesting Devices: Beyond the Battery,” Nature Nanotechnology, Vol. 3, pp. 71–72, 2008.
Wijngaards, D. D. L., Kong, S. H., Bartek, M., and Wolffenbuttel, R. F., “Design and Fabrication of On-chip Integrated Poly-SiGe and Poly-Si Peltier Devices,” Sensors and Actuators A, Vol. 85, pp. 316–323, 2000.
Wijngaards, D. D. L., de Graaf, G., and Wolffenbuttel, R. F., “Single-chip Micro-thermostat Applying Both Active Heating and Active Cooling,” Sensors and Actuators A, Vol. 110, pp. 187–195, 2004.
Williams, C. B. and Yates, R. B., “Analysis of a Micro-electric Generator for Microsystems,” Proceedings of the Transducers 95/Eurosensors IX, pp. 369–372, 1995.
Yeatman, E. M., Mitcheson, P. D., and Holmes, A. S., “Micro-Engineered Devices for Motion Energy Harvesting,” IEEE International Electron Devices Meeting, pp. 375–378, 2007.
Younis, O. and Fahmy, S., “Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid, Energy-Efficient Approach,” Conference of the IEEE Computer and Communications Societies, pp. 640–651, 2004.
Zou, J. and Balandin, A., “Phonon Heat Conduction in a Semiconductor Nanowire,” J. Appl. Phys., Vol. 89, No. 5, pp. 2932–2938, 2001.