| 研究生: |
呂哲宇 Lu, Zhe-Yu |
|---|---|
| 論文名稱: |
自由活塞式史特靈冷凍機之設計與製作 Design and Manufacturing of a Free-Piston Stirling Cooler |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 史特靈冷凍機 、自由活塞式 、Beta型 、原型機設計 |
| 外文關鍵詞: | Stirling cooler, Free-piston, Beta type, Design of prototype |
| 相關次數: | 點閱:132 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以開發 型自由活塞式史特靈冷凍機並結合音圈馬達作為驅動源為主要目標,同時建立理論模式,以預測冷凍機內部動件之運作情形以及效能,起因於自由活塞式冷凍機無法利用機構之幾何尺寸得知活塞以及移氣器相互運動之關係,因此利用理論模式輔助原型機設計以及實驗,以達到較低之無負載溫度。在理論模式首先利用動力模式求出移氣器與活塞之位移以及速度,接著熱力模式將冷凍機內部分成三個腔室得到各腔室之熱力性質,而壓力會影響移氣器之位移,經過反覆的計算後可得到製冷頭之無負載溫度,且利用外部給予一熱負載,可計算求得性能係數。本研究成功開發出一 型自由活塞式冷凍機之原型機,並於馬達操作頻率為50 Hz、填充壓力為3 atm、工作流體為氦氣之參數下,得到153 K之無負載製冷溫度。
This study is aimed at developing a beta type free-piston Stirling cooler and using a voice coil motor as driving source. A theoretical model has been established to predict the dynamic behavior and coefficient of performance of the cooler.The free-piston Stirling cooler is different from traditional Stirling cooler in mechanism. A displacer of the beta type free-piston Stirling cooler is restricted by a planer spring. In order to achieve a low no-load temperature, the theoretical model is developed to assist a design of prototype and experiments. The displacement and velocity of piston and displacer can be obtained by a dynamic model in the theoretical model. Thermodynamic properties in three different chambers are the transient varying positions of a piston and a displacer is obtained by means of the dynamic model. The no-load temperature of the cold head can be obtained by energy equation. The coefficient of performance can be decided as heat load is applied on the cold head. In this study, a prototype cooler using helium as working fluid is developed, which is able to reach the no-load temperature of 153 K at charging pressure of 3 atm and operating frequency of 50 Hz.
[1] Organ, A. J., The regenerator and the Stirling engine. Mechanical Eengineering Publications Limited, 1997.
[2] Walker, G., Cryocoolers, Part 1: Fundamentals and Part 2: Applications. Plenum Press, New York, 1983.
[3] Beale, W. T., Stirling Cycle Type Thermal Device, U.S. Patent No. 3552120, 1971.
[4] Lane, N. W., Commercialization status of free-piston Stirling machines. 12th International Stirling Engine Conference, Durham, UK September, 2005.
[5] Timmerhaus, K.D., Reed R., Cryogenic engineering: fifty years of progress. Springer Science & Business Media, 2007.
[6] Ataer, Ö.E.,Karabulut, H., Thermodynamic analysis of the V-type Stirling-cycle refrigerator. International Journal of Refrigeration, vol. 28 (2): p. 183-189, 2005.
[7] Haarhuis, G., The mc 80-a magnetically driven stirling refrigerator. Cryogenics, vol. 18 (12): p. 656-658, 1978.
[8] Yasukawa, Y., Ohshima, K., Toyama, K., Itoyama, T.,Tsukahara, Y., Kikuchi, R., Matsumoto N., Design and Test of a 70 K Pulse Tube Cryocooler, Cryocoolers 12, Springer. p. 157-164, 2003.
[9] Jones, B., Development for space use of BAe’s improved single-stage Stirling cycle cooler for applications in the range 50–80 K, Cryocoolers 8, Springer. pp. 1-11,1995.
[10] Ross, R.G., Jr .,Boyle R.F., An overview of NASA space cryocooler programs—2006. 2006: Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration.
[11] Marquardt, E., Cryocooler reliability issues for space applications. Cryogenics, vol. 41 (11): p. 845-849, 2001.
[12] Milanez, F.H., Mantelli, M.B., Theoretical and experimental studies of a bi-metallic heat switch for space applications. International Journal of Heat and Mass Transfer, 2003. vol. 46 (24): p. 4573-4586.
[13] Sugita, H., Nakagawa T., Murakami H., Okamoto A.,Nagai H.,Murakami M., Narasaki K., Hirabayashi M., Cryogenic infrared mission “JAXA/SPICA” with advanced cryocoolers. Cryogenics, vol. 46 (2): p. 149-157,2006.
[14] 黃竹隱, 史特靈冷凍機之設計與理論分析 ,成功大學航空太空工程學系碩士學位論文,2012.
[15] 黃振軒, 分置式史特靈冷凍機之性能增進,成功大學航空太空工程學系碩士學位論文,2014.
[16] Walker, G., Senft J.R., Senft, Free-piston Stirling engines: Springer, 1985.
[17] Ackermann, R.A., Regenerative heat exchanger theory, in cryogenic regenerative heat exchangers. Springer, pp. 15-59, 1997.
[18] Swift, G.W., Garrett S.L., Thermoacoustics: A unifying perspective for some engines and refrigerators. The Journal of the Acoustical Society of America, vol.113 (5): p. 2379-2381, 2003.
[19] Choi, S., Nam K., Jeong S., Investigation on the pressure drop characteristics of cryocooler regenerators under oscillating flow and pulsating pressure conditions. Cryogenics. vol. 44 (3): p. 203-210, 2004.
[20] Kays, W.M., London, A.L., Compact heat exchangers. 1984.
[21] White, R., Vuilleumier Cycle Cryogenic Refrigeration, DTIC Document, 1976
[22] Pan, C., Zhang, T., Wang J., Zhou Y., Numerical study of a one-stage VM cryocooler operating below 10K. Applied Thermal Engineering, 2016.
[23] Gasser, M.G., Stirling cycle cryogenic cooler, U.S. Patent No.4389849, 1983
[24] Bowman, L., Berchowitz, D.M., Urieli, I., Microminiature Stirling cycle cryocoolers and engines, U.S. Patent No.5457956, 1995.
[25] Acord, T.T., Solenoid controlled cold head for a cryogenic cooler, U.S. Patent No.3991586, 1976.