| 研究生: |
黃煒竣 Huang, Wei-Chun |
|---|---|
| 論文名稱: |
建立在電磁波誘發透明的光拖曳之實踐與可能增進方向之探討 Implementation and Improvable Orientation of Light-Dragging Effect in Electromagnetically Induced Transparency Medium |
| 指導教授: |
管培辰
Kuan, Pei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 電磁波誘發透明 、光拖曳 |
| 外文關鍵詞: | Electromagnetically Induced Transparency, Light-dragging effect |
| 相關次數: | 點閱:138 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光拖曳現象是指一種相對於靜止觀察者,介質中光速會受介質移動速度影響的現象;而電磁波誘發透明(EIT, Electromagnetically Induced Transparency)是一種量子光學現象,同時此現象也會造成介質中光於 EIT 共振頻率附近的群速度下降,又稱慢光,而本文主要研究了發生於室溫電磁波誘發透明介質中的光拖曳現象。本實驗中使用了常溫銣85原子中的 D1-Line EIT 系統作為光拖曳的介質,並使用了移動平台進行光拖曳的實踐。
實驗中使用了三方向的亥姆霍茲線圈以及$mu $-metal進行磁場的補償及屏蔽,另外也使用了 3D 列印技術客製化零件進行系統的最小化,並在接近零磁場及加熱並加入幫浦光的條件下,進行了 EIT 慢光延遲時間及光拖曳造成的相位偏移量測,其中光拖曳相位偏移部分採用了外差檢測的方式進行量測。
實驗中測得了最大延遲時間 0.805 µs 以及相位偏移靈敏度 4.81 mrad/(mm/s),其中相位偏移靈敏度換算為光拖曳係數約為 2608.28,並以此結果與以其他 EIT 系統作為介質的研究進行比較,最後對於系統量測方式中可能的增進方向以及進一步作為陀螺儀應用的可能性進行討論。
The phenomenon of light-dragging refers to the effect where the speed of light within a moving medium is influenced by the moving velocity of the medium, relative to a stationary observer. Electromagnetically Induced Transparency (EIT) is a quantum optical phenomenon that also causes the group velocity of light within a medium to decrease near the EIT resonance frequency, a phenomenon often referred to as "slow light". This thesis primarily investigates the light-dragging effect occurring in a room-temperature medium under EIT conditions. In the experiment, the D1-Line EIT system in rubidium-85 atoms at room temperature was used as the medium for light-dragging, with a linear moving platform to achieve the light-dragging effect. Magnetic field compensation and shielding were achieved using three-axis Helmholtz coils and µ-metal. Additionally, custom parts were minimized through 3D printing technology. Under conditions of near-zero magnetic fields, heating, and the introduction of pumping light, measurements were taken for the delay time which is caused by EIT-induced slow light, and the phase shift caused by the light-dragging effect. The phase shift due to light-dragging was measured using a heterodyne detection method. The experiment recorded a maximum delay time of 0.805 µs and a phase shift sensitivity of 4.81 mrad/(mm/s), corresponding to a light-dragging coefficient of approximately 2608.28. These results were compared with studies using other EIT systems as the medium. The end of this thesis also concludes with a discussion of potential improvements in the measurement methods and the further applicability of this system as a gyroscope.
[1] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard. Optics and interferometry with atoms and molecules. Reviews of Modern Physics, 81:1051–1129, Jul 2009.
[2] D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel. Quantum test of the universality of free fall. Physical Review Letters, 112:203002, May 2014.
[3] L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan. Test of equivalence principle at 10−8 level by a dual-species double-diffraction raman atom interferometer. Physical Review Letters, 115:013004, Jul 2015.
[4] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller. Measurement of the fine structure constant as a test of the standard model. Science, 360(6385):191–195, 2018.
[5] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino. Precision measurement of the newtonian gravitational constant using cold atoms. Nature, 510(7506):518–521, 2014.
[6] M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu. Atomic velocity selection using stimulated raman transitions. Physical Review Letters, 66:2297–2300, May 1991.
[7] T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A. Donnelly, C. Overstreet, and M. A. Kasevich. Matter wave lensing to picokelvin tempera tures. Physical Review Letters, 114:143004, Apr 2015.
[8] D. Budker and M. Romalis. Optical magnetometry. Nature Physics, 3(4):227–234, 2007.
[9] J. Camparo. The rubidium atomic clock and basic research. Physics Today, 60(11):33–39, 2007. 41
[10] G. W. Biedermann, H. J. McGuinness, A. V. Rakholia, Y. Y. Jau, D. R. Wheeler, J. D. Sterk, and G. R. Burns. Atom interferometry in a warm vapor. Physical Review Letters, 118:163601, Apr 2017.
[11] A. Safari, I. De Leon, M. Mirhosseini, O. S. Magaña-Loaiza, and R. W. Boyd. Light-drag enhancement by a highly dispersive rubidium vapor. Physical Review Letters, 116:013601, Jan 2016.
[12] W. W. Erickson. Electromagnetically Induced Transparency. PhD thesis, Reed College, 2012.
[13] A. Olson and S. Mayer. Electromagnetically induced transparency in rubidium. American Journal of Physics, 77:116, 02 2009.
[14] Z. Chen, H. M. Lim, C. Huang, R. Dumke, and S. Y. Lan. Quantum-enhanced velocimetry with doppler-broadened atomic vapor. Physical Review Letters, 124(9):093202, 2020.
[15] D. A. Steck. Rubidium 85 d line data. 2008.
[16] M. Klein, M. Hohensee, D. F. Phillips, and R. L. Walsworth. Electromagnetically induced transparency in paraffin-coated vapor cells. Physical Review A, 83:013826, Jan 2011.
[17] G. Wang, Y. S. Wang, E. K. Huang, W. Hung, K. L. Chao, P. Y. Wu, Y. H. Chen, and I. A. Yu. Ultranarrow-bandwidth filter based on a thermal eit medium. Scientific Reports, 8(1):1–7, 2018.
[18] V. Piacente, G. Bardi, and L. Malaspina. Vapor pressure of rubidium and disso ciation energy of rb2. The Journal of Chemical Thermodynamics, 5(2):219–226, 1973.
[19] M. Fox. Quantum optics: an introduction. Oxford master series in atomic, optical, and laser physics. Oxford Univ. Press, Oxford, 2006.
[20] S. Chakrabarti, A. Pradhan, A. Bandyopadhyay, A. Ray, B. Ray, N. Kar, and P. N. Ghosh. Velocity-selective resonance dips in the probe absorption spectra of rb d2 transitions induced by a pump laser. Chemical Physics Letters, 399(1):120–124, 2004.
[21] R. Mirzoyan. Study of the coherent effects in rubidium atomic vapor under bi chromatic laser radiation. Theses, Université de Bourgogne, June 2013. 42
[22] E. Mariotti, S. Atutov, M. Meucci, P. Bicchi, C. Marinelli, and L. Moi. Dynamics of rubidium light-induced atom desorption (liad). Chemical Physics, 187(1-2):111– 115, 1994.
[23] M. Fleischhauer, A. Imamoglu, and J. P. Marangos. Electromagnetically induced transparency: Optics in coherent media. Reviews of Modern Physics, 77(2):633, 2005.
[24] S. Khan, V. Bharti, and V. Natarajan. Role of dressed-state interference in electro magnetically induced transparency. Physics Letters A, 380(48):4100–4104, 2016.
[25] K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, and E. E. Mikhailov. Mea surements of the magnetic field vector using multiple electromagnetically induced transparency resonances in rb vapor. Physical Review A, 83(1):015801, 2011.
[26] K. J. Boller, A. Imamoğlu, and S. E. Harris. Observation of electromagnetically induced transparency. Physical Review Letters, 66(20):2593, 1991.
[27] M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler. High efficiency coherent optical memory with warm rubidium vapour. Nature Commu nications, 2(1):1–5, 2011.
[28] O. Katz and O. Firstenberg. Light storage for one second in room-temperature alkali vapor. Nature Communications, 9(1):1–6, 2018.
[29] R. Finkelstein, S. Bali, O. Firstenberg, and I. Novikova. A practical guide to elec tromagnetically induced transparency in atomic vapor. New Journal of Physics, 25(3):035001, 2023.
[30] B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, Ch. J. Bordé, A. Landragin, and P. Bouyer. Six-axis inertial sensor using cold-atom interferometry. Physical Review Letters, 97:010402, Jul 2006.