| 研究生: |
許盈亭 Hsu, Ying-Ting |
|---|---|
| 論文名稱: |
凝血酶調節素藉由增加血纖維蛋白溶酶原活化促進巨噬細胞移動 Thrombomodulin Promotes Macrophage Migration by Enhancing Plasminogen Activation |
| 指導教授: |
吳華林
Wu, Hua-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 凝血酶調節素 、血纖維蛋白溶酶原 、巨噬細胞移動 |
| 外文關鍵詞: | Thrombomodulin, Plasminogen, Macrophage migration |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血纖維蛋白溶酶原(plasminogen, Plg)是血纖維蛋白溶酶(plasmin, Plm)的前驅物,其具有纖維蛋白溶解功能(fibrinolysis),是血栓的溶解的主要酵素。當細胞表面上特異性的Plg受體與Plg結合後,Plg被尿激酶型血纖維蛋白溶解酶原活化因子(uPA)分解活化成Plm,其位於細胞表面使細胞具有水解活性。在發炎反應中Plm的蛋白水解活性,調控巨噬細胞移動具有重要的角色。本實驗室先前的研究發現內皮細胞上的凝血酶調節素(thrombomodulin, TM)是一種Plg受體。TM參與在uPA對Plg的活化,並調控內皮細胞周圍的蛋白水解活性。然而,在TM與Plg交互作用是否參與在Plg誘導的白血球移動仍不清楚。在本篇研究中,我們提出巨噬細胞上的TM能與Plg一起調控細胞的移動。實驗結果顯示Plg能隨著劑量增加,而增加其與THP-1細胞結合。當THP-1細胞的TM基因表現減量時,其結合Plg及活化Plg的能力,比TM基因正常表現的細胞較低。此外,THP-1的細胞移動能受到uPA刺激Plg活化所調控。在小鼠實驗中,我們利用thioglycollate刺激腹膜炎的模式,發現在TM的胺基端類凝集素功能區(domain 1, D1)缺失的小鼠(TMLeD/LeD),其巨噬細胞浸潤至腹腔的數目相較於正常基因型小鼠少。從TMLeD/LeD小鼠分離出的巨噬細胞對於與Plg結合、Plg活化、Plg誘發的細胞移動以及Plg調控基質金屬蛋白酶-9(matrix metalloproteinases-9, MMP-9)活化的能力都低於TM基因表現正常小鼠之巨噬細胞。然而,我們發現Plg活性測試以及巨噬細胞浸潤在野生型(TMf/f)與白血球細胞上特異性凝血酶調節素剔除(LysMCre/TMf/f)小鼠中沒有顯著性的差異。在共軛焦顯微鏡下觀察,發現TMLeD/LeD小鼠的巨噬細胞相較於正常基因型小鼠其Plg與TM共位的現象較少。綜合以上的結果,巨噬細胞的TM能透過D1去促進Plg所誘發的巨噬細胞移動。這項研究證明TM與Plg的結合在巨噬細胞具有促進細胞移行的功能。
Plasminogen (Plg), a precursor of the serine protease plasmin (Plm), functions as a major enzyme in fibrinolytic system, which mediates the dissolution of blood clot. After Plg binding to specific Plg receptors on cell-surface, urokinase-type Plg activator (uPA) can activate and convert Plg to Plm, which possesses cell-associated proteolytic activity. Plm-mediated proteolytic activity plays an important role in macrophage migration in inflammation. In the previous studies, we demonstrated that thrombomodulin (TM) is a novel Plg receptor and is involved in uPA-mediated activation of Plg in regulating pericellular proteolysis in endothelial cells. However, whether TM/Plg interaction is involved in Plg-mediated leukocyte migration is unknown. Here, we report that TM in association with Plg participates in macrophage migration. We demonstrated that Plg bound to THP-1 cells dose-dependently. The binding of Plg and the rate of Plg activation were decreased in THP-1 cells when TM was knocked down in comparison with TM-expressed cells. uPA-induced Plg activation was required in the migration of THP-1 cells. The number of macrophage infiltration to peritoneum in thioglycollate-induced peritonitis in lectin-like domain (domain 1, D1) of TM deletion mice (TMLeD/LeD) was significantly decreased than that in TMWT/WT mice. Furthermore, the macrophages isolated from TMLeD/LeD mice ascites exhibited reduced Plg-associated activities, including Plg binding and activation, Plg-triggered cell migration, and Plg-induced activation of matrix metalloproteinases-9 activity. However, the myeloid-specific TM-deficient mice (LysMcre/TMflox/flox mice) had no significant effects on Plg activation and macrophage infiltration into the peritoneal cavity as compared with TM wild-type (TMflox/flox) mice. Less colocalization of Plg and TM was observed in macrophages from TMLeD/LeD mice as compared with that from TMWT/WT mice as observed using confocal microseopy. In conclusion, we proposed that Plg interacts with TM in macrophage to promote plg-mediated macrophage migration and lectin-like domain of TM is involved in the process. The association of TM/Plg in the migration of macrophages is a new biological function of TM in inflammation.
1. Andreasen, P. A., Egelund, R., and Petersen, H. H. (2000). The plasminogen activation system in tumor growth, invasion, and metastasis. Cellular and molecular life sciences : CMLS 57, 25-40.
2. Brownstein, C., Deora, A. B., Jacovina, A. T., Weintraub, R., Gertler, M., Khan, K. M., Falcone, D. J., and Hajjar, K. A. (2004). Annexin II mediates plasminogen-dependent matrix invasion by human monocytes: enhanced expression by macrophages. Blood 103, 317-324.
3. Burysek, L., Syrovets, T., and Simmet, T. (2002). The serine protease plasmin triggers expression of MCP-1 and CD40 in human primary monocytes via activation of p38 MAPK and janus kinase (JAK)/STAT signaling pathways. The Journal of biological chemistry 277, 33509-33517.
4. Busuttil, S. J., Ploplis, V. A., Castellino, F. J., Tang, L., Eaton, J. W., and Plow, E. F. (2004). A central role for plasminogen in the inflammatory response to biomaterials. Journal of thrombosis and haemostasis : JTH 2, 1798-1805.
5. Carmeliet, P., Moons, L., Lijnen, R., Baes, M., Lemaitre, V., Tipping, P., Drew, A., Eeckhout, Y., Shapiro, S., Lupu, F., and Collen, D. (1997). Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nature genetics 17, 439-444.
6. Castellino, F. J., and Ploplis, V. A. (2005). Structure and function of the plasminogen/plasmin system. Thrombosis and haemostasis 93, 647-654.
7. Chen, P. K., Chang, B. I., Kuo, C. H., Chen, P. S., Cho, C. F., Chang, C. F., Shi, G. Y., and Wu, H. L. (2013). Thrombomodulin functions as a plasminogen receptor to modulate angiogenesis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 27, 4520-4531.
8. Cheng, C. Y., Kuo, C. T., Lin, C. C., Hsieh, H. L., and Yang, C. M. (2010). IL-1beta induces expression of matrix metalloproteinase-9 and cell migration via a c-Src-dependent, growth factor receptor transactivation in A549 cells. British journal of pharmacology 160, 1595-1610.
9. Conway, E. M. (2012). Thrombomodulin and its role in inflammation. Seminars in immunopathology 34, 107-125.
10. Cunningham, O., Andolfo, A., Santovito, M. L., Iuzzolino, L., Blasi, F., and Sidenius, N. (2003). Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions. The EMBO Journal 22, 5994-6003.
11. Dano, K., Andreasen, P. A., Grondahl-Hansen, J., Kristensen, P., Nielsen, L. S., and Skriver, L. (1985). Plasminogen activators, tissue degradation, and cancer. Advances in cancer research 44, 139-266.
12. Das, R., Burke, T., and Plow, E. F. (2007). Histone H2B as a functionally important plasminogen receptor on macrophages. Blood 110, 3763-3772.
13. Ellis, V. (1997). Cellular receptors for plasminogen activators recent advances. Trends in cardiovascular medicine 7, 227-234.
14. Estreicher, A., Muhlhauser, J., Carpentier, J. L., Orci, L., and Vassalli, J. D. (1990). The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. The Journal of cell biology 111, 783-792.
15. Falcone, D. J., Borth, W., Khan, K. M., and Hajjar, K. A. (2001). Plasminogen-mediated matrix invasion and degradation by macrophages is dependent on surface expression of annexin II. Blood 97, 777-784.
16. Felez, J., Miles, L. A., Plescia, J., and Plow, E. F. (1990). Regulation of plasminogen receptor expression on human monocytes and monocytoid cell lines. The Journal of cell biology 111, 1673-1683.
17. Friedl, P. (2004). Prespecification and plasticity: shifting mechanisms of cell migration. Current opinion in cell biology 16, 14-23.
18. Gardsvoll, H., Kjaergaard, M., Jacobsen, B., Kriegbaum, M. C., Huang, M., and Ploug, M. (2011). Mimicry of the regulatory role of urokinase in lamellipodia formation by introduction of a non-native interdomain disulfide bond in its receptor. The Journal of biological chemistry 286, 43515-43526.
19. Ghosh, S., Johnson, J. J., Sen, R., Mukhopadhyay, S., Liu, Y., Zhang, F., Wei, Y., Chapman, H. A., and Stack, M. S. (2006). Functional relevance of urinary-type plasminogen activator receptor-alpha3beta1 integrin association in proteinase regulatory pathways. The Journal of biological chemistry 281, 13021-13029.
20. Godier, A., and Hunt, B. J. (2013). Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. Journal of thrombosis and haemostasis : JTH 11, 26-34.
21. Goguen, J. D., Bugge, T., and Degen, J. L. (2000). Role of the Pleiotropic Effects of Plasminogen Deficiency in Infection Experiments with Plasminogen-Deficient Mice. Methods 21, 179-183.
22. Gong, Y., Hart, E., Shchurin, A., and Hoover-Plow, J. (2008). Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. The Journal of clinical investigation 118, 3012-3024.
23. Han, H. S., Wu, H. L., Lin, B. T., Shi, C. S., and Shi, G. Y. (2000). Effect of thrombomodulin on plasminogen activation. Fibrinolysis and Proteolysis 14, 221-228.
24. Higazi, A. A., El-Haj, M., Melhem, A., Horani, A., Pappo, O., Alvarez, C. E., Muhanna, N., Friedman, S. L., and Safadi, R. (2008). Immunomodulatory effects of plasminogen activators on hepatic fibrogenesis. Clinical and experimental immunology 152, 163-173.
25. Hoang, K. D., and Rosen, P. (1992). The efficacy and safety of tissue plasminogen activator in acute ischemic strokes. The Journal of emergency medicine 10, 345-352.
26. Hu, K., Lin, L., Tan, X., Yang, J., Bu, G., Mars, W. M., and Liu, Y. (2008). tPA protects renal interstitial fibroblasts and myofibroblasts from apoptosis. Journal of the American Society of Nephrology : JASN 19, 503-514.
27. Kim, S. O., Plow, E. F., and Miles, L. A. (1996). Regulation of plasminogen receptor expression on monocytoid cells by beta1-integrin-dependent cellular adherence to extracellular matrix proteins. The Journal of biological chemistry 271, 23761-23767.
28. Kindzelskii, A. L., Amhad, I., Keller, D., Zhou, M. J., Haugland, R. P., Garni-Wagner, B. A., Gyetko, M. R., Todd, R. F., 3rd, and Petty, H. R. (2004). Pericellular proteolysis by leukocytes and tumor cells on substrates: focal activation and the role of urokinase-type plasminogen activator. Histochemistry and cell biology 121, 299-310.
29. Lauffenburger, D. A., and Horwitz, A. F. (1996). Cell migration: a physically integrated molecular process. Cell 84, 359-369.
30. Li, Q., Ke, F., Zhang, W., Shen, X., Xu, Q., Wang, H., Yu, X. Z., Leng, Q., and Wang, H. (2011). Plasmin plays an essential role in amplification of psoriasiform skin inflammation in mice. PloS one 6, e16483.
31. Li, X., Syrovets, T., and Simmet, T. (2012). The serine protease plasmin triggers expression of the CC-chemokine ligand 20 in dendritic cells via Akt/NF-kappaB-dependent pathways. Journal of biomedicine & biotechnology 2012, 186710.
32. Lighvani, S., Baik, N., Diggs, J. E., Khaldoyanidi, S., Parmer, R. J., and Miles, L. A. (2011). Regulation of macrophage migration by a novel plasminogen receptor Plg-R KT. Blood 118, 5622-5630.
33. Lo, I. C., Lin, T. M., Chou, L. H., Liu, S. L., Wu, L. W., Shi, G. Y., Wu, H. L., and Jiang, M. J. (2009). Ets-1 mediates platelet-derived growth factor-BB-induced thrombomodulin expression in human vascular smooth muscle cells. Cardiovascular research 81, 771-779.
34. Lottenberg, R., Minning-Wenz, D., and Boyle, M. D. (1994). Capturing host plasmin(ogen): a common mechanism for invasive pathogens? Trends in microbiology 2, 20-24.
35. Maillard, C., Berruyer, M., Serre, C. M., Amiral, J., Dechavanne, M., and Delmas, P. D. (1993). Thrombomodulin is synthesized by osteoblasts, stimulated by 1,25-(OH)2D3 and activates protein C at their cell membrane. Endocrinology 133, 668-674.
36. McCachren, S. S., Diggs, J., Weinberg, J. B., and Dittman, W. A. (1991). Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 78, 3128-3132.
37. Miles, L. A., Lighvani, S., Baik, N., Parmer, C. M., Khaldoyanidi, S., Mueller, B. M., and Parmer, R. J. (2014). New insights into the role of Plg-RKT in macrophage recruitment. International review of cell and molecular biology 309, 259-302.
38. Phipps, K. D., Surette, A. P., O'Connell, P. A., and Waisman, D. M. (2011). Plasminogen receptor S100A10 is essential for the migration of tumor-promoting macrophages into tumor sites. Cancer research 71, 6676-6683.
39. Ploplis, V. A., French, E. L., Carmeliet, P., Collen, D., and Plow, E. F. (1998). Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice. Blood 91, 2005-2009.
40. Plow, E. F., Doeuvre, L., and Das, R. (2012a). So Many Plasminogen Receptors: Why? Journal of biomedicine & biotechnology 2012.
41. Plow, E. F., Doeuvre, L., and Das, R. (2012b). So many plasminogen receptors: why? Journal of biomedicine & biotechnology 2012, 141806.
42. Plow, E. F., Herren, T., Redlitz, A., Miles, L. A., and Hoover-Plow, J. L. (1995). The cell biology of the plasminogen system. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 9, 939-945.
43. Pluskota, E., Soloviev, D. A., Bdeir, K., Cines, D. B., and Plow, E. F. (2004). Integrin alphaMbeta2 orchestrates and accelerates plasminogen activation and fibrinolysis by neutrophils. The Journal of biological chemistry 279, 18063-18072.
44. Raife, T. J., Lager, D. J., Madison, K. C., Piette, W. W., Howard, E. J., Sturm, M. T., Chen, Y., and Lentz, S. R. (1994). Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. The Journal of clinical investigation 93, 1846-1851.
45. Raymond, B. B., and Djordjevic, S. (2015). Exploitation of plasmin(ogen) by bacterial pathogens of veterinary significance. Veterinary microbiology 178, 1-13.
46. Roelofs, J. J., Rouschop, K. M., Leemans, J. C., Claessen, N., de Boer, A. M., Frederiks, W. M., Lijnen, H. R., Weening, J. J., and Florquin, S. (2006). Tissue-type plasminogen activator modulates inflammatory responses and renal function in ischemia reperfusion injury. Journal of the American Society of Nephrology : JASN 17, 131-140.
47. Saksela, O., and Rifkin, D. B. (1988). Cell-associated plasminogen activation: regulation and physiological functions. Annual review of cell biology 4, 93-126.
48. Sanderson-Smith, M. L., Dowton, M., Ranson, M., and Walker, M. J. (2007). The plasminogen-binding group A streptococcal M protein-related protein Prp binds plasminogen via arginine and histidine residues. Journal of bacteriology 189, 1435-1440.
49. Shi, C., and Pamer, E. G. (2011). Monocyte recruitment during infection and inflammation. Nature reviews Immunology 11, 762-774.
50. Smith, H. W., and Marshall, C. J. (2010). Regulation of cell signalling by uPAR. Nature reviews Molecular cell biology 11, 23-36.
51. Suzuki, K., Nishioka, J., Hayashi, T., and Kosaka, Y. (1988). Functionally active thrombomodulin is present in human platelets. Journal of biochemistry 104, 628-632.
52. Syrovets, T., Jendrach, M., Rohwedder, A., Schule, A., and Simmet, T. (2001). Plasmin-induced expression of cytokines and tissue factor in human monocytes involves AP-1 and IKKbeta-mediated NF-kappaB activation. Blood 97, 3941-3950.
53. Syrovets, T., Lunov, O., and Simmet, T. (2012). Plasmin as a proinflammatory cell activator. Journal of leukocyte biology 92, 509-519.
54. Tang, C. H., Hill, M. L., Brumwell, A. N., Chapman, H. A., and Wei, Y. (2008). Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with beta1 integrins. Journal of cell science 121, 3747-3756.
55. Van de Wouwer, M., Plaisance, S., De Vriese, A., Waelkens, E., Collen, D., Persson, J., Daha, M. R., and Conway, E. M. (2006). The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. Journal of thrombosis and haemostasis : JTH 4, 1813-1824.
56. Wei, Y., Tang, C. H., Kim, Y., Robillard, L., Zhang, F., Kugler, M. C., and Chapman, H. A. (2007). Urokinase receptors are required for alpha 5 beta 1 integrin-mediated signaling in tumor cells. The Journal of biological chemistry 282, 3929-3939.
57. Wygrecka, M., Marsh, L. M., Morty, R. E., Henneke, I., Guenther, A., Lohmeyer, J., Markart, P., and Preissner, K. T. (2009). Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood 113, 5588-5598.
58. Yavlovich, A., Higazi, A. A., and Rottem, S. (2001). Plasminogen binding and activation by Mycoplasma fermentans. Infection and immunity 69, 1977-1982.
校內:2021-07-30公開