簡易檢索 / 詳目顯示

研究生: 謝博弈
Chia, Eric
論文名稱: 利用在位環形壓縮與光同調斷層掃描觀察糖尿病對神經內血管之影響
In situ Circular Compression and Doppler Optical Coherence Tomography Studies on Effects of Diabetic Mellitus on Vesa Nervonum of Sciatic Nerve
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 78
中文關鍵詞: 糖尿病周邊神經滋養管類線性粘彈性多普勒光同調斷層掃描
外文關鍵詞: diabetic mellitus, nerve tissue, vasa nervorum, quasi-linear viscoelasticity, Doppler optical coherence tomography
相關次數: 點閱:196下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖尿病是一種常見的疾病,並且會造成周邊神經病變,甚至死亡。因此本研究著重於觀察糖尿病對於神經以及其內部滋養管所造成的影響以及其生物力學特性。本研究應用多普勒光同調斷層掃描和在位環形壓縮來觀察正常以及糖尿病大鼠的坐骨神經被壓縮後,裡面的滋養管是否能舒張,並整合斷層掃描得到的形貌和環形壓縮得到的力量,藉由適當的力學模型來描述形貌變化和力量之間的關係。而環形壓縮得到的力量訊號,可以藉由馮院士的類線性粘彈性模型得到神經的材料參數。試驗結果顯示糖尿病神經的鬆弛時間較長,切線楊氏模數較低。 而斷層掃描得到的影像證實糖尿病神經在鬆弛時間內,其內的滋養管無法擴張。本研究也提出應用薄殼理論來描述滋養管的力學特性,同時也觀察到血管有自動調節血管腔大小的能力。與正常神經相比,糖尿病神經的結構是相對的鬆散,而其內部的滋養管容易遭受破壞。這個現象或許可以解釋說糖尿病患者比一般人更容易患上腕隧道症候群,以及其他周邊神經受壓造成的神經損傷的疾病。

    Diabetes mellitus is one of the most common diseases in the world and can cause many types of neuropathies, and even mortality. It is therefore important to understand how diabetes mellitus alters the mechanical properties of nerve tissues and their blood vessels. This study is to examine the dilatation of vasa nervorum inside the nerve trunk by using circular compression test and Doppler OCT, then proposes a biomechanical model to explain how vasa nervorum interact with the compression force and compare the simulated results with images captured by Doppler OCT. In this study, in situ compression-and-hold circular compression tests were applied to the sciatic nerves of both diabetic rats and normal rats. Doppler optical coherence tomography (Doppler OCT) was then utilized to monitor the configuration of the vasa nervorum in two groups of rats. The force data acquired in the compression tests were fitted by using Fung’s quasi-linear viscoelastic model (QLV) to determine the viscoelasticity of the nerves. The results show that the nerves in the diabetic group had a longer relaxation time but lower stress responses than those in the normal group. Consequently, the Doppler OCT observations reveal that in contrast to the normal vasa nervorum, the diabetic vasa nervorum did not dilate in the relaxation phase. This study also provides that the biomechanical properties of vasa nervorum may be described as shell model and confirms the autoregulatory responses of blood vessels. In summary, the diabetic nerve is friable and its vasa nerverom is fragile and may explain why the diabetic patients are more prone to carpal tunnel syndrome.

    Abstract i Contents iv Figure list vi Table list viii Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Peripheral Nerve and Vesa nervorum Anatomy 2 1.1.2 Diabetic Neuropathy 4 1.1.3 Doppler Optical Coherence Tomography 5 1.1.4 Biomechanics of Soft Tissues 6 1.2 Literature Review 7 1.3 Motivation and Objectives 9 Chapter 2 Material and Methods 10 2.1 In vivo Animal Experiments 10 2.1.1 Samples Preparation 10 2.1.2Apparatus Setup 11 2.1.3 Experimental Procedures 13 2.2 Doppler Optical Coherence Tomography 15 2.3 Biomechanical Properties of Nerve Tissues and Vesa nervorum 16 2.3.1 Biomechanical Properties of Nerve Tissues 16 2.3.2 Biomechanical Properties of Vesa nervorum 17 2.3.2.1 Plane Strain Assumption 17 2.3.2.2 Shell Mechanics Assumption 20 2.3.3 Rough Estimation of Heart Rate from Doppler OCT Images 22 2.4 Morphology Analysis of Vesa nervorum 23 Chapter 3 Results 27 3.1 Image and Data Analysis 27 3.2 QLV Analysis and Simulation Results 44 3.2.1 QLV Analysis of Normal Nerves and Diabetic Nerves 44 3.2.2 Biomechanical Simulation Results of Vesa Nervorum 53 3.2.2.1 Simulation Results under Plane Strain Assumption 53 3.2.2.2 Simulation of Buckling Vesa Nervorum 55 Chapter 4 Discussion 58 4.1 Relationship between Vesa Nervorum Images 58 and Stress Responses of Nerve Tissue 4.2 Biomechanical Model Analysis of Vesa Nervorum 60 4.3 Comparison of QLV Parameters with Past Studies 63 4.4 Limitation of the experiments 64 Chapter 5 Conclusions 66 Summary and Future Works 66 Appendix A 68 Appendix B 71 References 76

    1. John Ward and Y. Goto, Diabetic Neuropathy. 1990, England: John Wiley & Sons.
    2. Sunderland, S.S. and F. Walshe, Nerves and nerve injuries. 1968, New York: Churchill Livingstone.
    3. Lundborg, G., Nerve injury and repair. 2nd edition ed. 2004, Philadelphia: Elsvier.
    4. Johnson, P.C., S.C. Doll, and D.W. Cromey, Pathogenesis of diabetic neuropathy. Annals of Neurology, 1986. 19(5): p. 450-457.
    5. Timperley, W.R., et al., Clinical and histological studies in diabetic neuropathy. Diabetologia, 1976. 12(3): p. 237-243.
    6. Y.C.Fung, Biomechanics: Mechanical Properties of Living Tissues. 2nd edition ed. 1993, New York: Springer-Verlag.
    7. Vito, R.P. and S.A. Dixon, Blood vessel constitutive models-1995-2002. Annual review of biomedical engineering, 2003. 5: p. 413-439.
    8. Dalin, T., et al., Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid-wall interactions. Transactions of the ASME. Journal of Biomechanical Engineering, 2001. 123(6): p. 548-557.
    9. Karimi, R., et al., Estimation of Nonlinear Mechanical Properties of Vascular Tissues via Elastography. Cardiovascular Engineering, 2008. 8(4): p. 191-202.
    10. Rydevik, B. and G. Lundborg, Permeability of intraneural microvessels and perineurium following acute, graded experimental nerve compression. Scandinavian journal of plastic and reconstructive surgery, 1977. 11(3): p. 179-187.
    11. Rydevik B Fau, N., Changes in nerve function and nerve fibre structure induced by acute, graded compression. Journan of Neurology Neurosurgery and Psychiatry, 1980(0022-3050 (Print)).
    12. Kwan, M.K., et al., Strain, stress and stretch of peripheral nerve. Rabbit experiments in vitro and in vivo. Acta orthopaedica Scandinavica, 1992. 63(3): p. 267-272.
    13. Millesi, H., G. Zoch, and R. Reihsner, Mechanical-Properties of Peripheral-Nerves. Clinical Orthopaedics and Related Research, 1995(314): p. 76-83.
    14. Chen, R.-J., C.-C.K. Lin, and M.-S. Ju, In situ biomechanical properties of normal and diabetic nerves: An efficient quasi-linear viscoelastic approach. Journal of Biomechanics, 2010. 43(6): p. 1118-1124.
    15. 陳榮建, 類線性黏彈理論於正常與糖尿病變周邊神經組織在位力學與類神經細胞力學之研究. 2011.7.
    16. Ju, M.S., et al., Transverse elasticity and blood perfusion of sciatic nerves under in situ circular compression. Journal of Biomechanics, 2006. 39(1): p. 97-102.
    17. Chen, R.J., C.C. Lin, and M.S. Ju, In situ transverse elasticity and blood perfusion change of sciatic nerves in normal and diabetic rats. Clin Biomech (Bristol, Avon), 2010. 25(5): p. 409-14.
    18. 曾冠豪, 三維有限元素模型與光同調斷層掃描術於正常與糖尿病變周邊神經組織黏彈性力學之研究. 2013.7.
    19. Huang, D., et al., Optical Coherence Tomography. Science, 1991. 254(5035): p. 1178-1181.
    20. Brezinski, M.E., et al., Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics. The Journal of surgical research, 1997. 71(1): p. 32-40.
    21. Boppart, S.A., et al., Imaging developing neural morphology using optical coherence tomography. Journal of Neuroscience Methods, 1996. 70(1): p. 65-72.
    22. Roper, S.N., et al., In vivo detection of experimentally induced cortical dysgenesis in the adult rat neocortex using optical coherence tomography. Journal of neuroscience methods, 1998. 80(1): p. 91-98.
    23. Mariampillai, A., et al., Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system. Optics Express, 2007. 15(4): p. 1627-1638.
    24. S. Timoshenko, J.N.G., Theory of Elasticity. 1951: McGraw-Hill.
    25. Johnson, P.C., Autoregulatory Responses of Cat Mesenteric Arterioles Measured in Vivo. Circulation Research, 1968. 22(2): p. 199-212.
    26. Johnson, P.C., Autoregulation of blood flow. Circulation Research, 1986. 59(5): p. 483-495.
    27. Gore, R.W., Pressures in Cat Mesenteric Arterioles and Capillaries during Changes in Systemic Arterial Blood Pressure. Circulation Research, 1974. 34(4): p. 581-591.
    28. Flügge, W., Stresses in Shells. 1960, Berlin/Heidelberg: Springer-Verlag.
    29. Kass, M., A. Witkin, and D. Terzopoulos, Snakes: Active contour models. International journal of computer vision, 1988. 1(4): p. 321-331.
    30. Zahnd, G., et al. Intramural shear strain can highlight the presence of atherosclerosis: A clinical in vivo study. in Ultrasonics Symposium (IUS), 2011 IEEE International. 2011.
    31. Fagerberg, S.E., Studies on the Pathogenesis of Diabetic Neuropathy. Acta Medica Scandinavica, 1957. 159(1): p. 59-62.
    32. Brezinski, M.E., Optical Coherence Tomography: Principles and Applications. 2006, London: Academic Press.
    33. Kasai, C., et al., Real-Time Two-Dimensional Blood Flow Imaging Using an Autocorrelation Technique. Sonics and Ultrasonics, IEEE Transactions on, 1985. 32(3): p. 458-464.
    34. Fitzgerald, A.J., et al., Catalogue of human tissue optical properties at terahertz frequencies. Journal of Biological Physics, 2003. 29(2-3): p. 123-128.
    35. Abramowitch, S.D., An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory. Journal of Biomechanical Engineering, 2004. 126(1): p. 92.

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE