| 研究生: |
簡廷峰 Chien, Ting-Fong |
|---|---|
| 論文名稱: |
微波合成CaAlSiN3螢光粉及其螢光效能研究 Microwave Synthesis of CaAlSiN3:Eu2+ Phosphor and its Photoluminescent Properties |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 螢光粉 、氮化物 、微波合成 、CaAlSiN3:Eu2+ |
| 外文關鍵詞: | Phosphor, Nitride, Microwave synthesis, CaAlSiN3:Eu2+ |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
白光發光二極體(Light Emitting Diode; LED)相較於傳統光源,白熾燈泡與日光燈,具有耗電量低、體積小、壽命長、環保、高功率等優點,因此近年來世界各先進國家基於節省能源與環保之目的,皆積極開發白光LED為新世代之固態照明光源。目前市售之白光LED產品大多為利用黃光之氧化物螢光粉搭配藍光晶片。由於缺乏紅光,此一設計之演色性差,光色冷白,且所用之氧化物螢光粉熱穩定性與量子效率差,因此高效能、熱穩定性佳之紅光螢光粉開發成為LED白光照明之重要開發項目。與其他紅光螢光粉比較氮化物螢光粉由於键結與晶格場強度強,具有發光波長長與熱穩定性佳等特點,並可在藍光或紫外光下激發是相當理想而極具應用潛力的紅光螢光材料。然而,文獻上報導之氮化物螢光粉之合成方法,皆需嚴苛的條件下進行,如高溫、高壓、長時間反應等,許多方法且使用空氣、溼氣敏感且昂貴之反應物,加上複雜之製程步驟,造成氮化物螢光粉之生產成本高因而限制了其應用。本研究之目的乃運用具有能源效率高,且加熱快速均勻,且具促進質傳功效之微波技術開發氮化物螢光粉合成製程。本研究成功地開發了使用能在空氣中處理之反應物且能在常壓以及短時間下合成CaAlSiN3:Eu2+紅色螢光粉。此螢光粉在460nm之藍光激發下可得到一主峰波長位於640nm,波長介於500至800nm之發射光譜。吾人並探討反應物組成對產物生成及發光效率之影響,吾人並發現,產物經酸洗後處理可有效提升螢光強度。
White light emitting diodes (LED) compared to conventional light sources, such as incandescent bulbs and fluorescent lamps, has more advantages such as low power consumption, small size, long life, environmentally friendly, high-power, etc. Therefore, advanced countries in recent years based on energy saving and environmental protection purposes, use white LED as a new generation of solid-state lighting. Now white light LED technologies of the current market was used yellow oxide phosphor with blue chips. Due to lack of red phosphors, this system is poor color rendering and oxide phosphor suffer from poor chemical stability and low quantum efficiency. So, the research change focus on developing the high efficiency and thermal stability red phosphor for LED. Compare with another red phosphor, nitride phosphor because of strong bond and crystal filed, it has long wavelength, high chemical stability, thermal stability properties and can be excited by UV or blue lights, it has quite good potential applications in the red phosphor material. However, the methods that have been developed for synthesis of the and nitride phosphors mostly suffer from either severe synthesis conditions (e.g., high reaction temperatures or pressures or long reaction time) or involving the use of moisture or oxygen sensitive starting materials. which limiting its development and application. In this study had taken advantage of microwave (e.g., high energy efficiency, rapid and uniform heating, promote mass transfer effectiveness) to success at atmospheric pressure and short duration time synthesis CaAlSiN3:Eu2+ phosphor. This phosphor excited by blue light 460nm has a broad emission ban in the range from 500nm to 800nm and centered at 640nm. Effects of experimental parameters on the product and luminescence intensity, also find acid-wash can effectively enhance the fluorescence intensity.
1. Jacobson, M. Z. Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science, (2009). 2(2), 148-173.
2. Nakamura S, Mukai T, and Senoh M : Candela-class high-brightness InGaN/AlGaN double heterostructure blue-Light emitting diodes. App. Phys. Lett 1994, 64 : 1687-1689.
3. Narukawa Y : White-light LEDs. Opt. Photonics News 2004, 4 : 25-29.
4. Rohwer LS and Srivastava AM : Development of phosphor for LEDs. Electrochem. Soc. Interface 2003 : 36-39.
5. Taso JY (Ed.) : Light emitting diodes (LEDs) for general illumination update Optoelectronics Industry Development Association, Washington, DC 2002 : 6-7.
6. 劉如熹,劉宇恆,”發光二極體用氧氮螢光粉介紹”, (2006)
7. Kitai, A., Luminescent Materials and Applications. Wiley Series in Materials for Electronic and Optoelectronic Applications, ed. P. Capper, S. Kasap, and A.Willoughby. 2008: John Wiley & Sons Ltd.
8. Lee, W.-C., et al., Novel process for combustion synthesis of AlN powder. Journal of Materials Research, 1995. 10(3): p. 774-778.
9. Lee, W.-C. and S.-L. Chung, Combustion synthesis of Si3N4 powder.
Journal of Materials Research, 1997. 12(3): p. 805-811.
10. Hwang, C.-C. and S.-L. Chung, Combustion synthesis of boron nitride powder.Journal of Materials Research, 1998. 13(3): p. 680-686.
11. Lin, C.-N. and S.-L. Chung, Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II). Journal of Materials Research,2004.19(10): p. 3037-3045.
12. Chung, S.-L., C.-W. Chang, and F.J. Cadete Santos Aires, Reaction mechanism in combustion synthesis of -Si3N4 powder using NaN3. Journal of Materials Research,2008. 23(10): p. 2720-2726.
13. 劉彥群,“白光LED 用之高效能氮氧化物螢光粉(Ca-alpha-SiAlON)之合成製程開發 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國98 年(2009 年)。
14. 張豐勝,” Mg-alpha-SiAlON氮氧化物螢光粉之合成製程開發與螢光效能之研究”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國99年(2010年)。
15. Yen, W.M., S. Shionoya, and H. Yamamoto, Phosphor handbook. 2nd ed. 2006, New York: CRC Press Taylor & Francis Group.
16. 溫佑良,“不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究”,碩士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國92 年 (2003 年)。
17. 陳立德,“鹼土鋁酸鹽MxSr1-xAl2O4:Eu2+(M:Ca,Ba)螢光粉體之發光、色度特性及應用研究 ”,博士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國95 年 (2006 年)。
18. 高弘任,“檸檬酸法製備鋁酸鍶鈣螢光粉體及其光性質研究 ”,碩士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國97 年 (2008 年)。
19. Clegg, R. M.; Wang, X. F.; Herman, B. Chemical Analysis Series, 1996, 137, 196.
20. Blasse, G., & Grabmaier, B. C. Luminescent materials (Vol. 44). Berlin: Springer-Verlag. (1994).
21. Yamamoto, H., Physical Chemistry-6th, Oxford University Press,Tokyo (1998).
22. 楊幼如,“以奈米軟水鋁石合成銪鏑共摻鋁酸鍶螢光體初探 ”,碩士論文,國立成功大學資源工程研究所,台南市,台灣,民國95年 (2006 年)。
23. 陳嘉民,“微波輔助溶液燃燒合成法製備螢光粉體 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國95 年 (2006 年)。
24. Kuboniwa, S., H. Kawai, and T. Hoshina, Cathodoluminescence Saturation and Decay Characteristics of ZnS: Cu,Al Phosphor. Japanese Journal of Applied Physics,1980. 19(9): p. 1647-1653.
25. 石景仁,“白光發光二極體用之釔鋁石榴石螢光粉合成及特性分析 ”,碩士論文,國立臺灣大學化學系,台北市,台灣,民國90 年 (2001 年)。
26. Thostenson, E. T., & Chou, T. W. Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing, (1999). 30(9), 1055-1071。
27. Westphal, W. B., & Von Hippel, A. R. (1954). Dielectric materials and applications. (1954) Chap, 2, 68.
28. 劉岐山,“微波能應用”, 電子工業出版社,(1990)。
29. 汪建民, “陶瓷技術手冊”, 中華民國科技發展協進會(1994)。
30. 張存續,”材料與微波之頻率響應與反應特性”,工業材料雜誌216期。
31. Janny, M. A. and Kimrey, H. D, Mater. Res. Soc. Proc., 189 (1991) 215-227。
32. Lewis, D. A. Mater. Res. Soc., Proc., 269, 21 (1992)。
33. A. Janny, C. L. Calhoun and H. D. Kimrey, Ceram. Trans., 21, 311(1991)。
34. Janny, M. A. and Kimrey, H. D, Ceramic Powder Science, vol. II, American ceramic Society, 919 (1988)。
35. Fathi, Z. Ahmed, I. Simmons, J.H. Clark, D.E. Lodding, A.R.Ceram. Trans., 21 (1991), p. 623
36. Booske, John H., Reid F. Cooper, and Ian Dobson. "Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids." Journal of materials research 7.02 (1992): 495-501.
37. Freeman, S. J. H. Booske, J. H. Cooper, R. F. Meng, B. Kieffer, J. and B. J. reardon, Proceedings of the workshop on microwave-absorbing materials for accelerators, Newport News (1993)。
38. Wang, J., Binner, J., Vaidhyanathan, B., Joomun, N., Kilner, J., Dimitrakis, G., & Cross, T. E.. Evidence for the microwave effect during hybrid sintering. Journal of the American Ceramic Society, (2006).89(6), 1977-1984.
39. Uheda, K., Hirosaki, N., Yamamoto, H., Yamane, H., Yamamoto, Y., Inami, W., & Tsuda, K. The Crystal Structure and Photoluminescence Properties of a New Red Phosphor, Calcium Aluminum Silicon Nitride Doped With Divalent Euroium. Abs, (2004). 2073, 206.
40. Uheda, K., Hirosaki, N., Yamamoto, Y., Naito, A., Nakajima, T., & Yamamoto, H. Luminescence properties of a red phosphor, CaAlSiN3: Eu2+, for white light-emitting diodes. Electrochemical and Solid-State Letters, (2006). 9(4), H22-H25.
41. Uheda, K., Hirosaki, N., & Yamamoto, H. Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode. physica status solidi (a), (2006). 203(11), 2712-2717.
42. Piao, X., Machida, K. I., Horikawa, T., Hanzawa, H., Shimomura, Y., & Kijima, N. Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chemistry of Materials, (2007).19(18), 4592-4599.
43. Li, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T., & Mitomo, M. Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: structure, photoluminescence, and application in white LEDs. Chemistry of Materials, (2008).20(21), 6704-6714.
44. Watanabe, H., & Kijima, N. Crystal structure and luminescence properties of Sr x Ca 1− x AlSiN 3: Eu2+ mixed nitride phosphors. Journal of alloys and compounds, (2009). 475(1), 434-439.
45. Zhang, Z., Otmar, M., Delsing, A., van der Kolk, E., Notten, P. H., Dorenbos, P., & Hintzen, H. T. Photoluminescence properties and energy level locations of RE3+ (RE= Pr, Sm, Tb, Tb/Ce) in CaAlSiN3 phosphors. Journal of Materials Chemistry, (2012). 22(19), 9813-9820.
46. Zhang, Z., Delsing, A. C., Notten, P. H., Zhao, J., Dorenbos, P., & Hintzen, H. T. Photoluminescence Properties of Red-Emitting Mn2+-Activated CaAlSiN3 Phosphor for White-LEDs. ECS Journal of Solid State Science and Technology, (2013).2(4), R70-R75.
47. Tsuji, K., X-Ray Technology, in Kirk‑Othmer Encyclopedia of Chemical Technology.2007, John Wiley & Sons, Inc.
48. Guo, C., Huang, D., & Su, Q. Methods to improve the fluorescence intensity of CaS: Eu2+red-emitting phosphor for white LED. Materials Science and Engineering: B, (2006).130(1), 189-193.
49. Zhang, H., Horikawa, T., Hanzawa, H., Hamaguchi, A., & Machida, K. I. Photoluminescence properties of α-SiAlON: Eu2+ prepared by carbothermal reduction and nitridation method. Journal of The Electrochemical Society, (2007).154(2), J59-J61.
50. Im, W. B., Kang, J. H., Lee, D. C., Lee, S., Jeon, D. Y., Kang, Y. C., & Jung, K. Y. Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application. Solid state communications, (2005).133(3), 197-201.
校內:2017-07-29公開