簡易檢索 / 詳目顯示

研究生: 陳偉杰
Chen, Wei-Chieh
論文名稱: 含膽固醇基兩性液晶單體之合成與光學特性探討
Synthesis and Photo-Behaviors of Amphotropic Liquid Crystalline Monomer with Cholesteryl Group
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 78
中文關鍵詞: 液晶合成光學活性兩性液晶
外文關鍵詞: liquid crystal, synthesis, optical properties, amphotropic liquid crystal
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗合成一液晶單體CCM,同時具有熱向型及溶致型液晶的特性,以FT-IR、1H-NMR、SAXS鑑定分子結構,TGA、DSC和POM分析其熱性質及液晶特質,探討其分子排列及溫度效應對選擇性光反射波段的影響。本研究經原子轉移自由基聚合法合成新穎性二嵌段共聚高分子PS-b-PCCM及經活性自由基聚合法合成新穎性共聚物PCCM以1H-NMR和GPC鑑定分子結構,POM和DSC分析其液晶相,所合成的二嵌段共聚物重量平均分子量約為1.2×〖10〗^5~2.2×〖10〗^5 gmol-1。本研究合成之均聚高分子和共聚高分子均不具液晶相性質。而本研究所合成之兩性液晶單體CCM,其熱向型液晶之液晶相範圍大於90°C,為膽固醇液晶相;而溶致型液晶之液晶相存在於低於60°C,濃度約介於60至65 wt % 之間,為膽固醇液晶相。單體超過聚合溫度形成之部分聚合膽固醇液晶,具有較有秩序性的分子排列,以及較明顯的選擇性光反射性質。單體之溶致型液晶態,具最佳的分子有秩序性排列,及效率優良之選擇性光反射性質,其反射可見光的特性,可以設計為溶劑感測器。

    In this work, we synthesized a liquid crystalline monomer CCM, which possess amphotropic liquid crystalline properties. Dependence of selective reflection on molecular arrangement and temperature effects were studied. Furthermore, a novel diblock copolymer PS-b-PCCM was synthesized via ATRP method and a homopolymer PCCM was synthesized using AIBN. The amphotropic liquid crystalline monomer CCM shows thermotropic cholesteric liquid crystal phase at a temperature higher than 90°C. Lyotropic cholesteric liquid crystal state exists in some proper solvents. Increase of temperature to a specific point, some CCM monomers were found to be polymerized. The partially polymerized cholesteric liquid crystal shows some higher order and more significant selective reflection. The results of lyotropic liquid crystalline CCM suggest that this predesigned CCM is available for using as a solvent sensor and tunable bandgap filter.

    第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1 液晶簡介 3 2-1-1液晶的種類 5 2-1-2 熱向型液晶之分子排列 7 2-1-3 膽固醇液晶之分子排列和光學特性 9 2-1-4 溶致型液晶之簡介 14 2-2 嵌段共聚物之概述 16 2-3 原子轉移自由基聚合法 17 2-4 膽固醇型溶致液晶之簡介 20 第三章 實驗部分 25 3-1 實驗藥品 25 3-2 實驗儀器 27 3-3 實驗步驟 29 3-3-1 藥品純化 29 3-3-2 含Cinnamate基團光學活性化合物之合成 29 3-3-3 側鏈型二嵌段共聚高分子之合成 32 3-3-4 均聚高分子 PCCM之聚合 34 第四章 結果與討論 36 4-1 含 Cinnamate 基團光學活性單體之鑑定 36 4-2單體之熱性質、液晶相、分子排列和光學性質之探討 40 4-2-1 單體之熱性質和液晶相之探討 40 4-2-2 單體之分子排列之探討 42 4-2-3 單體之光學性質之探討 43 4-2-4 單體之光異構化之探討 44 4-3 單體部份聚合之熱性質、液晶相、光學性質之探討 45 4-3-1 單體部份聚合之熱性質和液晶相之探討 45 4-3-2 單體部份聚合之光學性質之探討 46 4-4 單體之溶致型液晶性質之探討 54 4-4-1 溶致型液晶之溶劑效應 54 4-4-2 溶致型液晶之熱效應與光學性質 56 4-5 聚合物之探討 59 4-5-1 合成二嵌段共聚物之鑑定與探討 59 4-5-2 均聚高分子之探討 66 4-5-3 高分子熱重損失探討 68 第五章 結論 72 參考文獻 73

    1. 松本正一, 角田市良合著 and 劉瑞祥譯 (1996), 液晶之基礎與應用. 國立編譯館出版.
    2. Averill, B. and P. Eldredge (2011), Chemistry : Principles, Paterns, and Applications. Prentice Hall.
    3. Schadt, M. and J. Fünfschilling (1990), "New liquid crystal polarized color projection principle," Japanese journal of applied physics, 29(part 1): pp. 1974-1984.
    4. Mitov, M. (2012), "Cholesteric Liquid Crystals with a Broad Light Reflection Band," Advanced Materials, 24(47): pp. 6260-6276.
    5. Kitzerow, H.-S. and P. Crooker (1993), "Electric field effects on the droplet structure in polymer dispersed cholesteric liquid crystals," Liquid Crystals, 13(1): pp. 31-43.
    6. Prost, J. (1995), The physics of liquid crystals. Oxford university press.
    7. Gin, D.L., W. Gu, B.A. Pindzola and W.-J. Zhou (2001), "Polymerized lyotropic liquid crystal assemblies for materials applications," Accounts of chemical research, 34(12): pp. 973-980.
    8. Fontell, K. (1981), "Mol. Crystals Liq. Crystals," 63: pp. 59.
    9. Elliott, A. and E. Ambrose (1950), "Evidence of chain folding in polypeptides and proteins," Discussions of the Faraday Society, 9: pp. 246-251.
    10. Wang, J.S. and K. Matyjaszewski (1995), "Controlled Living Radical Polymerization - Atom-Transfer Radical Polymerization in the Presence of Transtion-Metal Complexes," Journal of the American Chemical Society, 117(20): pp. 5614-5615.
    11. Patten, T.E. and K. Matyjaszewski (1998), "Atom transfer radical polymerization and the synthesis of polymeric materials," Advanced Materials, 10(12): pp. 901-915.
    12. Matyjaszewski, K. and J. Xia (2001), "Atom transfer radical polymerization," Chemical Reviews, 101(9): pp. 2921-2990.
    13. Kabachii, Y.A., S.Y. Kochev, L.M. Bronstein, I.B. Blagodatskikh and P.M. Valetsky (2003), "Atom transfer radical polymerization with Ti (III) halides and alkoxides," Polymer Bulletin, 50(4): pp. 271-278.
    14. Le Grognec, E., J. Claverie and R. Poli (2001), "Radical polymerization of styrene controlled by half-sandwich Mo (III)/Mo (IV) couples: all basic mechanisms are possible," Journal of the American Chemical Society, 123(39): pp. 9513-9524.
    15. Brandts, J.A.M., P. van de Geijn, E.E. van Faassen, J. Boersma and G. van Koten (1999), "Controlled radical polymerization of styrene in the presence of lithium molybdate(V) complexes and benzylic halides," Journal of Organometallic Chemistry, 584(2): pp. 246-253.
    16. Stoffelbach, F., D.M. Haddleton and R. Poli (2003), "Controlled radical polymerization of alkyl acrylates and styrene using a half-sandwich molybdenum (III) complex containing diazadiene ligands," European polymer journal, 39(11): pp. 2099-2105.
    17. Kotani, Y., M. Kamigaito and M. Sawamoto (1999), "Re (V)-mediated living radical polymerization of styrene: 1 ReO2I (PPh3) 2/RI initiating systems," Macromolecules, 32(8): pp. 2420-2424.
    18. Kotani, Y., M. Kamigaito and M. Sawamoto (2000), "Living Radical Polymerization of Para-Substituted Styrenes and Synthesis of Styrene-Based Copolymers with Rhenium and Iron Complex Catalysts 1," Macromolecules, 33(18): pp. 6746-6751.
    19. Kato, M., M. Kamigaito, M. Sawamoto and T. Higashimura (1995), "Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization," Macromolecules, 28(5): pp. 1721-1723.
    20. Percec, V., B. Barboiu, A. Neumann, J.C. Ronda and M. Zhao (1996), "Metal-catalyzed “living” radical polymerization of styrene initiated with arenesulfonyl chlorides. From heterogeneous to homogeneous catalysis," Macromolecules, 29(10): pp. 3665-3668.
    21. Ando, T., M. Kamigaito and M. Sawamoto (1997), "Design of initiators for living radical polymerization of methyl methacrylate mediated by ruthenium (II) complex," Tetrahedron, 53(45): pp. 15445-15457.
    22. Ando, T., M. Kamigaito and M. Sawamoto (1997), "Iron (II) Chloride Complex for Living Radical Polymerization of Methyl Methacrylate 1," Macromolecules, 30(16): pp. 4507-4510.
    23. Matyjaszewski, K., M. Wei, J. Xia and N.E. McDermott (1997), "Controlled/“Living” Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes 1," Macromolecules, 30(26): pp. 8161-8164.
    24. Moineau, G., C. Granel, P. Dubois, R. Jérôme and P. Teyssié (1998), "Controlled radical polymerization of methyl methacrylate initiated by an alkyl halide in the presence of the Wilkinson catalyst," Macromolecules, 31(2): pp. 542-544.
    25. Mecerreyes, D., G. Moineau, P. Dubois, R. Jérôme, J.L. Hedrick, C.J. Hawker, et al. (1998), "Simultaneous Dual Living Polymerizations: A Novel One‐Step Approach to Block and Graft Copolymers," Angewandte Chemie International Edition, 37(9): pp. 1274-1276.
    26. Granel, C., P. Dubois, R. Jérôme and P. Teyssié (1996), "Controlled radical polymerization of methacrylic monomers in the presence of a bis (ortho-chelated) arylnickel (II) complex and different activated alkyl halides," Macromolecules, 29(27): pp. 8576-8582.
    27. Uegaki, H., Y. Kotani, M. Kamigaito and M. Sawamoto (1997), "Nickel-Mediated Living Radical Polymerization of Methyl Methacrylate 1," Macromolecules, 30(8): pp. 2249-2253.
    28. Lecomte, P., I. Drapier, P. Dubois, P. Teyssié and R. Jérôme (1997), "Controlled radical polymerization of methyl methacrylate in the presence of palladium acetate, triphenylphosphine, and carbon tetrachloride," Macromolecules, 30(24): pp. 7631-7633.
    29. Wang, B., Y. Zhuang, X. Luo, S. Xu and X. Zhou (2003), "Controlled/“living” radical polymerization of MMA catalyzed by cobaltocene," Macromolecules, 36(26): pp. 9684-9686.
    30. Braunecker, W.A., Y. Itami and K. Matyjaszewski (2005), "Osmium-mediated radical polymerization," Macromolecules, 38(23): pp. 9402-9404.
    31. Wang, J.-S. and K. Matyjaszewski (1995), "Controlled/" living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes," Journal of the American Chemical Society, 117(20): pp. 5614-5615.
    32. Wang, J.-S. and K. Matyjaszewski (1995), "Controlled/" living" radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu (I)/Cu (II) redox process," Macromolecules, 28(23): pp. 7901-7910.
    33. Percec, V. and B. Barboiu (1995), "" Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuI (bpy) nCl," Macromolecules, 28(23): pp. 7970-7972.
    34. Xia, J. and K. Matyjaszewski (1997), "Controlled/“living” radical polymerization. Atom transfer radical polymerization using multidentate amine ligands," Macromolecules, 30(25): pp. 7697-7700.
    35. Tang, K., M.M. Green, K.S. Cheon, J.V. Selinger and B.A. Garetz (2003), "Chiral conflict. The effect of temperature on the helical sense of a polymer controlled by the competition between structurally different enantiomers: from dilute solution to the lyotropic liquid crystal state," Journal of the American Chemical Society, 125(24): pp. 7313-7323.
    36. Bubnov, A., M. Kašpar, V. Hamplová, U. Dawin and F. Giesselmann (2013), "Thermotropic and lyotropic behaviour of new liquid-crystalline materials with different hydrophilic groups: synthesis and mesomorphic properties," Beilstein journal of organic chemistry, 9(1): pp. 425-436.
    37. Bubnov, A., M. Kaspar, V. Hamplova, U. Dawin and F. Giesselmann (2013), "Thermotropic and lyotropic behaviour of new liquid-crystalline materials with different hydrophilic groups: synthesis and mesomorphic properties," Beilstein Journal of Organic Chemistry, 9: pp. 425-436.
    38. Hirst, L.S., S.J. Watson, H.F. Gleeson, P. Cluzeau, P. Barois, R. Pindak, et al. (2002), "Interlayer structures of the chiral smectic liquid crystal phases revealed by resonant x-ray scattering," Physical Review E, 65(4).
    39. Kutulya, L., V. Vashchenko, G. Semenkova and N. Shkolnikova (1999), "Effect of chiral dopants molecular structure on temperature dependencies of induced cholesteric helical pitch," Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals, 331: pp. 2443-2451.
    40. Zhang, F. and D.K. Yang (2002), "Temperature dependence of pitch and twist elastic constant in a cholesteric to smectic A phase transition," Liquid Crystals, 29(12): pp. 1497-1501.
    41. Gaikwad, P.P. and M.T. Desai "Liquid Crystalline Phase & its Pharma Applications," 2(12): pp. 40-52.
    42. Tang, W., Y. Kwak, W. Braunecker, N.V. Tsarevsky, M.L. Coote and K. Matyjaszewski (2008), "Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants," Journal of the American Chemical Society, 130(32): pp. 10702-10713.

    下載圖示 校內:2019-08-01公開
    校外:2019-08-01公開
    QR CODE