簡易檢索 / 詳目顯示

研究生: 陳彥伃
Chen, Yen-Yu
論文名稱: 使用褶積模型應用於有銷售與回報時間延遲之保固維修資料研究
Inferences by Using Convolution Models for Field Failure Warranty Data with Lag Time Problem
指導教授: 鄭順林
Jeng, Shuen-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 83
中文關鍵詞: 保固維修資料銷售延遲回報延遲褶積模型失效率匯總監控圖
外文關鍵詞: Field Failure Warranty Data, Sales Lag, Report Lag, Convolution Model, Aggregate Failure-Rate Monitor Plot
相關次數: 點閱:137下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 保固為售貨公司對於購買產品的顧客的一個擔保。在產品的保固期內,若此產品在正常的使用情況下,而導致產品不能使用或損壞,售貨公司必須無條件的將損壞的產品修理至正常甚至更換新的產品給顧客。而保固維修資料即在產品保固期內,所收集到要求免費維修的損壞產品紀錄。保固維修的資料庫建立容易,很多公司建立此資料庫通常是想使用其訊息達到對於產品品質的早期監控,對於維修所需更換的產品元件備料的預測,以及建立對於不同的ODM商所製造的產品元件品質的評估與獎懲程序。但由於保固維修資料庫為求建立方便,導致資料庫中可能會有銷售延遲與回報延遲之問題。這樣的延遲問題常常導致無法正確得到產品真正的失效時間,造成分析上的困難。

    在過去的研究中,褶積模型通常被應用來解決有延遲問題的保固維修資料。但是往往很少有研究,同時考慮銷售延遲與回報延遲的問題。在本研究中,當回報延遲時間無法從保固維修資料庫中得到,我們提供了一個新的方法用來估計回報時間的分佈。若資料收集有銷售延遲與回報延遲的問題時,我們亦建立了可靈活描述產品失效率的參數模型來解決這樣的問題。

    使用我們所建立的參數模型可以得到產品未來的失效率與其預測區間。而利用模型所預測出來的失效率,可以提供給廠商作為參考,以達到早期監控產品的品質、備料的預測、以及對於ODM商的獎懲程序。研究中我們也提供了一個新的圖形工具—“失效率匯總監控圖”,利用此圖形工具我們可以初步快速與容易的偵測出品質較為不好的產品。

    A warranty is a guarantee between a manufacturer and a consumer which requires the manufacturer to rectify failures that occurred in non-human factors within certain time. Most companies maintain warranty databases for purposes of warranty expense forecasting and the ODM (Original Design Manufacturers) penalty program. The warranty database may have the sales lag and report lag problems. These problems cause the difficulty of failure time analysis which the real interest is the failure time after the customer starts to use the product.

    In certain literature, the convolution models were applied to the warranty database with the lag time problem. However, not much research has been done for the problem that the data have two types of lag at the same time. In this study, we propose a new method which are used to estimate the report lag distribution, when the report lag time are not recorded in the warranty databases. We also build a flexible parametric model which describes the failure rate of field data that are collected with sales lag and report lag and predicts the future failure rate with uncertainty limits.

    Finally, we use the predicted failure rate to estimate the required spare parts, to indicate the possible quality outbreak for early warning and suggest a ODM penalty rule. A new graphical tool, aggregate failure-rate monitor plot, is proposed for the surveillance of product quality.

    1. INTRODUCTION...1 1.1 Background and Motivation...1 1.2 Warranty Data Description...3 1.3 Literature Review...9 1.3.1 Age-Based Failure Time Analysis...9 1.3.2 Sales Lag and Report Lag Time Analysis...10 1.3.3 Warranty Claims Forecast Analysis...11 1.4 Overview...11 2. METHODOLOGY...13 2.1 Identification of Failure Time Model...13 2.2 The Random Start Model with Sales Lag Data...14 2.2.1 Continuous Random Start Model with Sales Lag Distribution...15 2.2.2 Discrete Random Start Model with Sales Lag Distribution...16 2.3 The Convolution Model with Report Lag Data...17 2.4 Estimation of Report Time Distribution...18 2.5 The Prediction for the Staggered Entry Data...20 2.6 The MLE Problem of the Convolution Model...22 3. PRELIMINARY ANALYSIS...24 3.1 Data Source and Warranty Data Entry Types...24 3.2 Data Exploration...27 3.2.1 The Histogram for Failure Rate (Number)...27 3.2.2 Visualization of On-Field-Time Data...27 3.2.3 Aggregate Failure-Rate Monitor Plot...34 3.3 Pre-Model Fitting...40 3.4 Pre-Model Prediction...40 4. CONVOLUTION OF TWO DISTRIBUTIONS...46 4.1 Random Start Model...46 4.1.1 Fitting of the Sales Lag Time...46 4.1.2 Fitting by the Random Start Model...46 4.2 Prediction by the Random Start Model...48 4.2.1 Predicted Failure Rate in On-Field-Time...48 4.2.2 Predicted Cumulative Failure Rate in On-Field Time...50 4.2.3 Predicted Cumulative Failure Rate in Usage Time...51 5. CONVOLUTION OF THREE DISTRIBUTIONS...53 5.1 The Comparison of Data from Various Stages...53 5.2 The Convolution Model with Report Lag Data...57 5.3 Prediction by the Convolution Model...57 5.3.1 Predicted Defect Rate in On-Field Time...57 5.3.2 Predicted Cumulative Failure Rate in Usage Time...65 6. CONCLUSIONS AND FUTURE STUDIES...67 6.1 Conclusions...67 6.2 Future Studies...68 Appendix...71 Appendix A. The Results of The Three Components Convolution Model...72

    Alam, M. M. and Suzuki, K. (2009), “Lifetime Estimation Using Only Failure Information From Warranty Database,” IEEE Transactions on Reliability , 58(4), 573–582.
    Condra, L. W. (2001), Reliability Improvement with Design of Experiments, New York: Marcel Dekker.
    Escobar, L. A. and Meeker, W. Q. (1999), “Statistical prediction based on censored life data,” Technometrics, 41(2), 113–124.
    Kalbfleisch, J. D. and Lawless, J. F. (1988), “Estimation of reliability from field performance studies (with discussion),” Technometrics, 30(2), 365–88.
    Kalbfleisch, J. D. and Lawless, J. F. (1996), “Statistical analysis of warranty claims data,” in Blischke, W. R. and Murthy, D. N. P. (Eds), Product Warranty Handbook, Marcel Dekker, New York, NY, 231–59.
    Kalbfleisch, J. D. , Lawless, J. F., and Robinson, J. A. (1991), “Methods for the analysis and prediction of warranty claims,” Technometrics, 33(2), 273–85.
    Karim, M. R. and Suzuki, K. (2004), “Analysis of field failure warranty data with sales lag,” Pakistan Journal of Statistics, 20(1), 93–102.
    Karim, M. R. and Suzuki, K. (2005), “Analysis of warranty claim data: a literature review,” International Journal of Quality and Reliability Management, 22(7), 667–686.
    Lawless, J. F. (1998), “Statistical analysis of product warranty data,” International Statistical Review, 66(1), 41–60.
    Lawless, J. F. and Kalbfleisch, J. D. (1992), “Some issues in the collection and analysis of field reliability data,” in Klein, J. P. and Goel, P. K. (Eds), Survival Analysis: State of the Art, Kluwer Academic, Dordrecht, 141–152.
    Lawless, J. F., Crowder, M. J., and Lee, K. A. (2009), “Analysis of Reliability and Warranty Claims in Products With Age and Usage Scales,” Technometrics, 51(1), 14–24.
    Lu, M.W. (1998), “Automotive reliability prediction based on early field failure warranty data,” Quality and Reliability Engineering International, 14, 103–108.
    Majeske, K. D., Caris, T. L., and Herrin, G. (1997), “Evaluating product and process design changes with warranty data,” International Journal of Production Economics, 50, 79–89.
    Meeker, W. Q. and Escobar, L. A. (1998), Statistical Methods for Reliability Data Analysis, New York: Wiley & Sons.
    Nelson, W. (1990), Acceleratd Testing: Statistical Model, Test Plans, and Data Analyses, New York: Wiley.
    Robinson, J. A. and McDonald, G. C. (1991), “Issues related to field reliability and warranty data,” in Liepins, G. E. and Uppuluri, V. R. R. (Eds), Data Quality Control: Theory and Pragmatics, Marcel Dekker, New York, NY.
    Suzuki, K. (1985a), “Nonparametric estimation of lifetime distribution from a record of failures and follow-ups,” Journal of the American Statistical Association, 80(389), 68–72.
    Suzuki, K. (1985b), “Estimation of lifetime parameters from incomplete field data,” Technometrics, 27(3), 263–271.
    Wu, H. and Meeker, W. Q. (2002), “Early Detection of Reliability Problems Using Information From Warranty Databases,” Technometrics, 44(2), 120–133.
    Wilson S. , Joyce T. , and Lisay E. (2009), “Reliability estimation from field return data,” Lifetime Data Analysis, 15, 397–410.

    下載圖示 校內:2015-07-28公開
    校外:2015-07-28公開
    QR CODE