簡易檢索 / 詳目顯示

研究生: 康舒婷
Kang, Shu-ting
論文名稱: IC 封裝製程中烘烤作業規劃之研究
Planning of Post-Mold Curing Operation in IC Packaging
指導教授: 謝中奇
Hsieh, Chung-Chi
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 61
中文關鍵詞: 烘烤作業分批處理前瞻式方法儲位指派動態空間配置IC 封裝
外文關鍵詞: storage assignment, post-mold cure, look-ahead method, batch process, IC packaging, dynamic space allocation
相關次數: 點閱:178下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 烘烤作業為半導體製程中IC 封裝(Integrated circuit packaging) 之後段程序,其需將封膠完成後之IC 置放於烤箱中以固定溫度持續烘烤一段時間,才能讓IC 上之膠體完全固化並除去晶片內部水氣,確保IC 功能正常。
    在目前的烘烤作業中,通常為求有效利用烤箱空間,在烤箱內部仍有IC 期間依舊會開啟烤箱以放置其它未烘烤IC 。但每一次的開啟動作都會使得外部環境之空氣進入烤箱,導致烤箱內部溼度提昇,並影響烘烤溫度,次數若過於頻繁會讓IC 無法在規定時間內固化膠體並完全去除水氣。實務上面對此問題,會將IC 額外再烘烤一小段時間以降低烤箱開啟頻繁的影響,然而此做法為事後補救,並未真正解決因烤箱開關頻繁而影響烘烤穩定度、導致烘烤不完全之問題。
    針對上述問題,若能事先規劃求解每批IC 的放入與取出時間以及選擇適當擺放儲位,則可有效降低每批IC 在烘烤過程中歷經的平均烤箱開啟次數。本研究針對目前封裝烘烤作業流程提出適當修改,建構出烘烤作業之決策模式,再考量不同情況設計求解演算法,探討如何擺放IC 以及何時擺放、取出可讓烤箱開啟次數降低。最後則利用實際資料去分析不同參數設定下之結果,希望能在降低烤箱開關作業數的同時,同時衡量烤箱的使用情況及其利用率,以期對烘烤作業
    做出整體性的評估,提供實務上作業選擇之依據。

    The post-mold cure operation is the back-end process of integrated circuit packaging in semiconductor industry. It involves baking the encapsulated IC in an oven for about 6-24 hours and at constant temperature. The main function of the baking is curing the compound and removing moisture in IC chip.
    For optimum utilization of the capacity of oven, ovens have to be constantly opened for incoming lots, even though they may be currently active at that time with existing lots inside. In such cases, when the oven is opened during the baking process, the humidity within the oven will rise and the interior temperature of the oven will be greatly affected. This problem is solved in practice by increasing the baking time.
    Consequently, this may reduce the effect of opening the ovens frequently. Nevertheless, such an increase and addition of extra time does not settle the root cause behind the problem of incomplete baking.
    To address and solve the problems aforementioned, the start-baking time, end-baking time, and the lot locations in the ovens can be determined and decided upon using an algorithm that can effciently reduce and optimize the oven opening frequency.
    This thesis focuses on planning of post-mold curing operation in IC packaging. It constructs the problem model and then proposes algorithms in different cases to solve
    this problem. Finally it compares the results with different parameters to provide relevant information as a reference to the industry.

    摘要i 英文摘要ii 誌謝iii 表目錄vii 圖目錄viii 第一章緒論1 1.1 研究背景與動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究假設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 研究流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章相關文獻回顧6 2.1 半導體封裝製程簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 烘烤作業簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 儲位指派策略. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 隨機儲存. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 空位儲位指派. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.3 定位儲位指派. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.4 完全週轉率儲位指派. . . . . . . . . . . . . . . . . . . . . . . 14 2.3.5 分類儲位指派. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 動態空間配置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 分批處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 前瞻式方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 第三章問題定義與模式23 3.1 問題描述與基本假設. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 問題描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.2 基本假設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 作業流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 模式建構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 符號說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.2 模式說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 求解演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.1 模式一:固定決策時點,一次考量單一批量. . . . . . . . . . 36 3.4.2 模式二:固定決策時點,且事先依烘烤時間分類. . . . . . . 39 3.4.3 模式三:固定決策時點,事先依烘烤時間分類,並加入未來 資訊考量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 第四章數值分析42 4.1 測試資料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 數值分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1 選擇間隔時間. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.2 選擇批量策略. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.3 單一批量位置選擇策略. . . . . . . . . . . . . . . . . . . . . . 46 4.2.4 分批模式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.5 允許延遲時間與未來批量資訊量. . . . . . . . . . . . . . . . . 49 4.2.6 批量在烘烤過程平均烤箱開啟次數. . . . . . . . . . . . . . . 50 4.3 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 第五章結論與建議54 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 未來研究建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 參考文獻57

    Caron, F., Marchet, G. and Perego, A. Routing policies and coi-based storage policies
    in picker-to-part systems. International Journal of Production Research, 36(3),
    713-732, 1998.
    Chew, S. and Tan, A. C. Evaluating the influence of post-mould cure and additives
    on the viscoelastic properties of a low stress epoxy mould compound. IEEE
    Transactions on Electronics Packaging Manufacturing, 26(3), 211-215, 2003.
    Cigolini, R., Perona, M., Portioli, A. and Zambelli, T. A new dynamic look-ahead
    scheduling procedure for batching machines. Journal of Scheduling, 5(2), 185-
    204, 2002.
    de Koster, M. B. M., van der Poort, E. S. and Wolters, M. Effcient orderbatching
    methods in warehouses. International Journal of Production Research, 37(7),
    1479-1504, 1999.
    de Koster, R., Le-Duc, T. and Roodbergen, K. J. Design and control of warehouse
    order picking: A literature review. European Journal of Operational Research,
    182(2), 481-501, 2007.
    Francis, R. L., McGinnis, L. F. and White, J. A. Facility Layout and Location: An
    Analytical Approach. Prentice Hall, 1992.
    Goetschalckx, M. and Ratliff, H. D. Shared storage policies based on the duration stay
    of unit loads. Management Science, 36(9), 1120-1132, 1990.
    Gupta, A. K. and Sivakumar, A. I. Controlling delivery performance in semiconductor
    manufacturing using look ahead batching. International Journal of Production
    Research, 45(3), 591-613, 2007.
    Hausman, W. H., Schwarz, L. B. and Graves, S. C. Optimal storage assignment in
    automatic warehousing systems. Management Science, 22(6), 629-638, 1976.
    Hu, Y. H., Huang, S. Y., Chen, C. Y., Hsu, W. J., Toh, A. C., Loh, C. K. and Song,
    T. C. Travel time analysis of a new automated storage and retrieval system.
    Computers & Operations Research, 32(6), 1515-1544, 2005.
    Ikura, Y. and Gimple, M. Effcient scheduling algorithms for a single batch processing
    machine. Operations Research Letters, 5(2), 61-65, 1986.
    Jang, J. J., Suh, J. D., Park, N. and Liu, R. A look-ahead routing procedure for
    machine selection in a highly informative manufacturing system. International
    Journal of Flexible Manufacturing Systems, 13(3), 287-308, 2001.
    Jarvis, J. M. and McDowell, E. D. Optimal product layout in an order picking ware-
    house. IIE Transactions, 23(1), 93-102, 1991.
    Kim, K. H. and Park, K. T. Dynamic space allocation for temporary storage. Inter-
    national Journal of Systems Science, 34(1), 11-20, 2003a.
    Kim, K. H. and Park, K. T. A note on a dynamic space-allocation method for outbound
    containers. European Journal of Operational Research, 148(1), 92-101, 2003b.
    Ko, M. and Kim, M. Effect of postmold curing on plastic ic package reliability. Journal
    of Applied Polymer Science, 69(11), 2187-2193, 1998.
    Kulturel, S., Ozdemirel, N. E., Sepil, C. and Bozkurt, Z. Experimental investigation of
    shared storage assignment policies in automated storage/retrieval systems. IIE
    Transactions, 31(8), 739-749, 1999.
    Larson, T. N., March, H. and Kusiak, A. A heuristic approach to warehouse layout
    with class-based storage. IIE Transactions, 29(4), 337-348, 1997.
    Le-Duc, T. and Koster, R. de. Travel time estimation and order batching in a 2-block
    warehouse. European Journal of Operational Research, 176(1), 374-388, 2007.
    Lin, T. Y., Njoman, B., Crouthamel, D., Chua, K. H., Teo, S. Y. and Ma, Y. Y.
    The impact of moisture in mold compound preforms on the warpage of PBGA
    packages. Microelectronics Reliability, 44(4), 603-609, 2004.
    Lwo, B. J. and Lin, C. S. Measurement of moisture-induced packaging stress with
    piezoresistive sensors. IEEE Transactions on Advanced Packaging, 30(3), 393-
    401, 2007.
    Mathirajan, M. and Sivakumar, A. I. A literature review, classification and simple
    meta-analysis on scheduling of batch processors in semiconductor. International
    Journal of Advanced Manufacturing Technology, 29(9-10), 990-1001, 2006.
    Meller, R. D. and Klote, J. E. A throughput model for carousel/vlm pods. IIE
    Transactions, 36(8), 725-741, 2004.
    Moon, G. and Kim, G. P. Effects of relocation to as/rs storage location policy with
    production quantity variation. Computers & Industrial Engineering, 40(1-2),
    1-13, 2001.
    Mosbarger, R. D. and Hickey, D. J. 1994. The effects of materials and post-mold pro¯les
    an plastic encapsulated integrated circuits. In Reliability Physics Symposium,
    1994. 32nd Annual Proceedings., IEEE International (p. 93-100).
    Oliveira, J. A. Scheduling the truckload operations in automatic warehouses. European
    Journal of Operational Research, 179(3), 723-735, 2007.
    59
    Perez, I. C., Fowler, J. W. and Carlyle, W. M. Minimizing total weighted tardiness
    on a single batch process machine with incompatible job families. Computers &
    Operations Research, 32(2), 327-341, 2005.
    Petersen, C. G. An evaluation of order picking routing policies. International Journal
    of Operations & Production Management, 17(11), 1098-1111, 1997.
    Petersen, C. G. and Aase, G. A comparison of picking, storage, and routing policies
    in manual order picking. International Journal of Production Economics, 92(1),
    11-19, 2004.
    Petersen, C. G. and Schmenner, R. W. An evaluation of routing and volume-based
    storage policies in an order picking operation. Decision Sciences, 30(2), 481-501,
    1999.
    Potts, C. N. and Kovalyov, M. Y. Scheduling with batching: A review. European
    Journal of Operational Research, 120(2), 228-249, 2000.
    Salzano, L. J., Wilkinson, C. and Sandborn, P. A. Environmental qualification test-
    ing and failure analysis of embedded resistors. IEEE Transactions on Advanced
    Packaging, 28(3), 503-520, 2005.
    Uzsoy, R. Scheduling batch processing machines with incompatible job families. Inter-
    national Journal of Production Research, 33(10), 2685-2708, 1995.
    Van der Zee, D. J. Dynamic scheduling of batch-processing machines with non-identical
    product sizes. International Journal of Production Research, 45(10), 2327-2349,
    2007.
    Van der Zee, D. J., Van Harten, A. and Schuur, P. C. Dynamic job assignment heuristics
    for multi-server batch operations - a cost based approach. International Journal
    of Production Research, 35(11), 3063-3093, 1997.
    Webster, S. and Baker, K. R. Scheduling groups of jobs on a single machine. Operations
    Research, 43(4), 692-703, 1995.

    下載圖示
    2012-07-23公開
    QR CODE