簡易檢索 / 詳目顯示

研究生: 吳青翰
Wu, Ching-Han
論文名稱: 最小化整體死亡人數之大量傷病患事故救護車派遣模式
A Heuristic-based Ambulance Dispatching Model for Mass Casualty Incidents to Minimize Overall Death
指導教授: 黃國平
Hwang, Kevin P.
學位類別: 博士
Doctor
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 130
中文關鍵詞: 大量傷病患事故例行日常救護緊急醫療救護啟發式解法指派問題一般化收送貨問題
外文關鍵詞: Assignment Problem, Emergency Medical Services, Generalized Pickup and Delivery Problem, Mass Casualty Incident, Heuristic, Routine Daily Emergency
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大量傷病患事故之救護車派遣問題,相關決策因素複雜,加上同時需考量保留一定數量之救護車以因應例行日常救護事故,因此在分秒必爭的狀況下,單憑救護派遣員的經驗及人為的判斷,難以在有限的時間內,做出最佳的救護車派遣決策。有鑑於此,本研究旨在構建大量傷病患事故之救護車派遣問題的數學模式,以決定最佳之出勤的救護車、傷患後送順序及後送醫院,並同時考量例行日常救護案件,以在合理的時間內計算最佳之派遣方式,使大量傷病患及例行救護病患的整體死亡人數最小化。
    本研究利用死亡率與時間之函數關係,估計大量傷病患及日常救護病患之死亡人數,以一般收送貨問題結合最大存活選址問題,構建救護車派遣之數學模式。因本問題屬為NP-hard問題,故本研究建構一以回溯適應性門檻接受法為基礎之啟發式解法,結合數學規劃軟體,發展一有效之求解演算法。
    最後,本研究建構32種測試例,並與最廣為被使用之後送決策方法進行比較,證實本研究建構之數學模式,可有效率的降低總死亡人數。

    The determinants of the ambulance dispatching for mass casualty incidents (MCIs) in consideration of routine daily emergencies are so complex that it is difficult to make the optimal decision efficiently solely depending on dispatchers' experience and human judgment. The objective of the study is to propose an ambulance dispatching model for MCIs to minimize the overall death including both a MCI and routine daily emergencies.
    We used the death rate, a function of time, to estimate the death toll of the MCI and daily emergencies, and developed an ambulance dispatching model based on the general pickup and delivery problem and the maximal survival location problem. The model is an NP-hard problem, and thus we proposed a backtracking adaptive threshold accepting based heuristic with the assistance of a mathematical programming solver.
    When tested with 32 instances and compared results with the most widely-used triage method, START, the proposed heuristic can efficiently obtain the solutions that decreased the overall death toll.

    目 錄 摘 要 I Abstract II 誌 謝 III 目 錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究範圍 2 1.3 研究方法及流程 3 1.4 論文架構 5 第二章 文獻回顧 7 2.1 緊急醫療救護系統與大量傷病患事故 7 2.1.1 緊急醫療救護系統 7 2.1.2 大量傷病患事故 9 2.2 存活率函數 14 2.2.1 例行日常救護事故存活率 16 2.2.2 大量傷病患事故存活率 20 2.3 事故處置相關文獻 22 2.3.1 大量傷病患之救護車派遣 22 2.3.2 大量傷病患之後送 25 2.3.3 救護車派遣數量與出勤單位之決策 27 2.4 一般收送貨問題 29 2.4.1 問題定義 29 2.4.2 GPDP數學模式 30 2.4.3 求解方法 33 2.5 指派問題 44 2.6 最大存活選址問題 45 2.6.1 最大覆蓋選址問題 45 2.6.2 最大存活選址問題 47 2.7 小結 48 第三章 問題分析及數學模式 49 3.1 問題描述 49 3.1.1 大量傷病患事故運作流程 49 3.1.2 問題分析 50 3.2 基本假設 55 3.3 數學模式 57 3.3.1 參數定義 57 3.3.2 決策變數 61 3.3.3 目標函數 61 3.3.4 限制式 62 第四章 求解方法 66 4.1 求解流程 66 4.2 起始解構建模式 68 4.2.1 符號定義 69 4.2.2 數學模式 69 4.3 車次合併演算法 71 4.4 鄰近區域搜尋法 75 4.4.1 選取車輛機制 75 4.4.2 交換機制 77 4.4.3 求解車次與傷患之最佳組合 80 4.5 回溯適應性門檻接受法 81 4.6 求解方法分析 83 第五章 測試與分析 85 5.1 參數設定 85 5.1.1 大量傷病患事故死亡率函數 85 5.1.2 例行日常救護死亡率函數 86 5.1.3 求解模式參數 87 5.2 測試例 88 5.2.1 行政區型態及大量傷病患事故地點 88 5.2.2 大量傷病患事故之人數及嚴重度 90 5.3 測試結果 91 5.3.1 求解績效對照組 91 5.3.2 求解模式測試 92 5.3.3 求解績效與對照組比較 94 5.4 結果分析 104 5.4.1 模式求解測試分析 104 5.4.2 救護車派遣排程之特性分析 106 第六章 結論與建議 111 6.1 結論 111 6.2 後續研究 113 參考文獻 i 表目錄 表2-1 反應時間與死亡率統計 19 表2-2 反應時間與存活率之羅吉斯迴歸Odds Ratio表 20 表2-3 各RPM值之存活率 21 表2-4 每30分鐘之RPM值惡化程度表 21 表4-1 車次合併演算法虛擬碼 74 表5-1 各RPM值之到達醫院時間與死亡率關係 85 表5-2 反應時間與日常救護事故累計死亡率 86 表5-3 各醫院可容納之病患數量 90 表5-4 大量傷病患事故之人數及嚴重度測試組合 90 表5-5 RPM值與START分級對照表 91 表5-6 有無使用指派問題求解之目標函數值比較 92 表5-6(續) 有無使用指派問題求解之目標函數值比較 93 表5-7 測試例SD(52人)之求解結果比較表 95 表5-8 測試例SD(104人)之求解結果比較表 96 表5-9 測試例SRe(52人)之求解結果比較表 97 表5-10 測試例SRe(104人)之求解結果比較表 99 表5-11 測試例RD(52人)之求解結果比較表 100 表5-12 測試例RD(104人)之求解結果比較表 101 表5-13 測試例RRe(52人)之求解結果比較表 102 表5-14 測試例RRe(104人)之求解結果比較表 103 表5-15 出動車數與傷患數量比例 107 表5-16 最近救護車出動比例 108 表5-17 大量傷病患後送順序 110 圖目錄 圖1-1 研究流程 4 圖2-1 緊急醫療救護流程圖 9 圖2-2 先到先送(FIFO)與分組排序(SGS)之後送順序圖 27 圖2-3 一般收送貨問題各種特殊型式 30 圖2-4 模擬退火法與門檻接受法之接受鄰近解機率圖 42 圖3-1 大量傷病患事故時之救護車運作流程 50 圖4-1 求解流程圖 67 圖4-2 車次合併之到院時間變化示意圖 72 圖4-3 車次合併示意圖 73 圖4-4 選取救護車機制示意圖 77 圖4-5 1-0節點交換法 78 圖4-6 1-1節點交換法 78 圖4-7 交換機制示意圖 79 圖4-8 回溯適應性門檻接受法執行流程圖 81 圖5-1 行政區型態及大量傷病患事故地點測試例 89 圖5-2 測試例SD(52人)演算過程目標函數值變化圖 95 圖5-3 測試例SD(104人)演算過程目標函數值變化圖 96 圖5-4 測試例SRe(52人)演算過程目標函數值變化圖 98 圖5-5 測試例SRe(104人)演算過程目標函數值變化圖 99 圖5-6 測試例RD(52人)演算過程目標函數值變化圖 100 圖5-7 測試例RD(104人)演算過程目標函數值變化圖 101 圖5-8 測試例RRe(52人)演算過程目標函數值變化圖 102 圖5-9 測試例RRe(104人)演算過程目標函數值變化圖 103 圖5-10 測試例之求解結果改善比例比較圖 106 圖5-11 出動車數與傷患數量比例 107 圖5-12 最近救護車出動比例圖 109

    Alsalloum, O. I., & Rand, G. K. (2006). Extensions to emergency vehicle location models. Computers & Operations Research, 33(9), 2725-2743.
    Andersson, T., & Värbrand, P. (2007). Decision support tools for ambulance dispatch and relocation. Journal of the Operational Research Society, 58(2), 195-201.
    Baldacci, R., Hadjiconstantinou, E., & Mingozzi, A. (2003). An exact algorithm for the traveling salesman problem with deliveries and collections. Networks, 42(1), 26-41.
    Barbarosoğlu, G., & Arda, Y. (2004). A two-stage stochastic programming framework for transportation planning in disaster response. Journal of the Operational Research Society, 55(1), 43-53.
    Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-and-price: column generation for solving huge integer programs. Operations Research, 46(3), 316-329.
    Belfiore, P. C., & Yoshizaki, H. T. Y. (2009). Scatter search for a real-life heterogeneous fleet vehicle routing problem with time windows and split deliveries in Brazil. European Journal of Operational Research, 199(3), 750-758.
    Bent, R., & Van Hentenryck, P. (2006). A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows. Computers & Operations Research, 33(4), 875-893.
    Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., & Laporte, G. (2007). Static pickup and delivery problems: a classification scheme and survey. TOP, 15(1), 1-31.
    Bitran, G., & Mondschein, S. (1997). Managing the tug-of-war between supply and demand in the service industries. European Management Journal, 15(5), 523-536.
    Blackwell, T. H., & Kaufman, J. S. (2002). Response time effectiveness: comparison of response time and survival in an urban emergency medical services system. Academic Emergency Medicine, 9(4), 288-295.
    Breedam, A. V. (1995). Improvement heuristics for the vehicle routing problem based on simulated annealing. European Journal of Operational Research, 86(3), 480-490.
    Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European Journal of Operational Research, 147(3), 451-463.
    Burkard, R. E. (2002). Selected topics on assignment problems. Discrete Applied Mathematics, 123(1-3), 257-302.
    Campbell, A. M., & Savelsbergh, M. (2004). Efficient insertion heuristics for vehicle routing and scheduling problems. Transportation Science, 38(3), 369-378.
    Carrabs, F., Cerulli, R., & Cordeau, J.-F. (2007a). An additive branch-and-bound algorithm for the pickup and delivery traveling salesman problem with LIFO or FIFO loading. INFOR, 45(4), 223-238.
    Carrabs, F., Cordeau, J.-F., & Laporte, G. (2007b). Variable neighborhood search for the pickup and delivery traveling salesman problem with LIFO loading. Informs Journal on Computing, 19(4), 618-632.
    Chaiken, J. M., & Larson, R. C. (1972). Methods for allocating urban emergency units: a survey. Management Science, 19(4), 110-130.
    Christie, P. M. J., & Levar, R. R. (1998). The use of simulation in planning the transportation of patients to hospitals following a disaster. Journal of Medical Systems, 22(5).
    Church, R. L., & Revelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32(1), 101-118.
    Church, R. L., & Roberts, K. L. (1983). Generalized coverage models and public facility location. Papers in Regional Science, 51(3), 117-135.
    Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568-581.
    Cone, D. C., & Macmillan, D. S. (2005). Mass-casualty triage systems: a hint of science. Academic Emergency Medicine, 12(8), 739-741.
    Cordeau, J.-F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations Research, 54(3), 573-586.
    Cordeau, J.-F., Dell'Amico, M., & Iori, M. (2010a). Branch-and-cut for the pickup and delivery traveling salesman problem with FIFO loading. Computers & Operations Research, 37(5), 970-980.
    Cordeau, J.-F., Iori, M., Laporte, G., & González, J. J. S. (2010b). A branch-and-cut algorithm for the pickup and delivery traveling salesman problem with LIFO loading. Networks, 55(1), 46-59.
    Cordeau, J.-F., & Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation Research Part B, 37(6), 579-594.
    Cortés, C. E., Matamala, M., & Contardo, C. (2010). The pickup and delivery problem with transfers: formulation and a branch-and-cut solution method. European Journal of Operational Research, 200(3), 711-724.
    Cummins, R. O., Ornato, J. P., Thies, W. H., & Pepe, P. E. (1991). Improving survival from sudden cardiac arrest: the "chain of survival" concept. Circulation, 83(5), 1832-1847.
    De Maio, V. J., Stiell, I. G., Wells, G. A., & Spaite, D. W. (2003). Optimal defibrillation response intervals for maximum out-of-hospital cardiac arrest survival rates. Annals of Emergency Medicine, 42(2), 242-250.
    Dell'amico, M., Righini, G., & Salani, M. (2006). A branch-and-price approach to the vehicle routing problem with simultaneous distribution and collection. Transportation Science, 40(2), 235-247.
    Dell'amico, M., & Toth, P. (2000). Algorithms and codes for dense assignment problems: the state of the art. Discrete Applied Mathematics, 100(1-2), 17-48.
    Diana, M., & Dessouky, M. M. (2004). A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows. Transportation Research Part B, 38(6), 539-337.
    Ding, G., Li, L., & Ju, Y. (2009). Multi-strategy grouping genetic algorithm for the pickup and delivery problem with time windows. Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, Shanghai, China.
    Dueck, G., & Scheuer, T. (1990). Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1), 161-175.
    Eckstein, M., Chan, L., Schneir, A., & Palmer, R. (2000). Effect of prehospital advanced life support on outcomes of major trauma patients. The Journal of Trauma: Injury, Infection, and Critical Care, 48(4), 643-648.
    Eckstein, M., & Chan, L. S. (2004). The effect of emergency department crowding on paramedic ambulance availability. Annals of Emergency Medicine, 43(1), 100-105.
    Eisenberg, M. S., Bergner, L., & Hallstrom, A. P. (1979). Cardiac resuscitation in the community. Importance of rapid provision and implications for program planning. Journal of the American Medical Association, 241(18), 1905-1907.
    Erdoğan, G., Cordeau, J.-F., & Laporte, G. (2009). The pickup and delivery traveling salesman problem with first-in-first-out loading. Computers & Operations Research, 36(6), 1800-1808.
    Erkut, E., Ingolfsson, A., & Erdoğan, G. (2008). Ambulance location for maximum survival. Naval Research Logistics, 55(1), 42-58.
    Feero, S., Hedges, J. R., Simmons, E., & Irwin, L. (1995). Does out-of-hospital EMS time affect trauma survival? The American Journal of Emergency Medicine, 13(2), 133-135.
    Fiedrich, F., Gehbauer, F., & Rickers, U. (2000). Optimized resource allocation for emergency response after earthquake disasters. Safety Science, 35(1-3), 41-57.
    Fisher, M. L., Tang, B., & Zheng, Z. (1995). A network flow based heuristic for bulk pickup and delivery routing. Transportation Science, 29(1), 45-55.
    Floudas, C. A., & Pardalos, P. M. (Eds.). (2009). ENCYCLOPEDIA OF OPTIMIZATION (2nd ed.). New York, NY: Springer.
    Gajpal, Y., & Abad, P. (2009). An ant colony system (ACS) for vehicle routing problem with simultaneous delivery and pickup. Computers & Operations Research, 36(12), 3215-3223.
    Galvão, R. D., & Morabito, R. (2008). Emergency service systems: the use of the hypercube queueing model in the solution of probabilistic location problems. International Transactions in Operational Research, 15(5), 525-549.
    Garner, A., Lee, A., Harrison, K., & Schultz, C. H. (2001). Comparative analysis of multiple-casualty incident triage algorithms. Annals of Emergency Medicine, 38(5), 541-548.
    Gebhart, M. E., & Pence, R. (2007). Start triage: does it work? Disaster Manage Response, 5(3), 68-73.
    Gendreau, M., Hertz, A., Laporte, G., & Stan, M. (1998). A generalized insertion heuristic for the traveling salesman problem with time windows. Operations Research, 46(3), 330-335.
    Gendreau, M., Laporte, G., & Vigo, D. (1999). Heuristics for the traveling salesman problem with pickup and delivery. Computers & Operations Research, 26(7), 699-714.
    Gillett, B. E., & Miller, L. R. (1974). A heuristic algorithm for the vehicle-dispatch problem. Operations Research, 22(2), 340-349.
    Goldberg, J. B. (2004). Operations research models for the deployment of emergency services vehicles. EMS Management Journal, 1(1), 20-39.
    Golden, B., Raghavan, S., & Wasil, E. (Eds.). (2008). THE VEHICLE ROUTING PROBLEM: LATEST ADVANCES AND NEW CHALLENGES. New York, NY: Springer Science+Business Media.
    Gong, Q., & Batta, R. (2007). Allocation and reallocation of ambulances to casualty clusters in a disaster relief operation. IIE Transactions, 39(1), 27-39.
    Good, L. (2008). Ethical decision making in disaster triage. Journal of Emergency Nursing, 34(2), 112-115.
    Gutiérrez-Jarpa, G., Desaulniers, G., Laporte, G., & Marianov, V. (2010). A branch-and-price algorithm for the vehicle routing problem with deliveries, selective pickups and time windows. European Journal of Operational Research, 206(2), 341-349.
    Haghani, A., & Oh, S.-C. (1996). Formulation and solution of a multi-commodity, multi-model network flow model for disaster relief operations. Transportation Research Part A, 30(3), 231-250.
    Hammond, J. (2005). Mass casualty incidents: planning implications for trauma care. Scandinavian Journal of Surgery, 94(4), 267-271.
    Heller, I., & Tompkins, C. (1956). An extension of a theorem of Dantzig's. In Kuhn, H. W. & Tucker, A. W. (Eds.), LINEAR INEQUALITIES AND RELATED SYSTEMS (pp. 247-254). Princeton, NJ: Princeton University Press.
    Hernández-Pérez, H., & Salazar-González, J.-J. (2004a). A branch-and-cut algorithm for a traveling salesman problem with pickup and delivery. Discrete Applied Mathematics, 145(1), 126-139.
    Hernández-Pérez, H., & Salazar-González, J.-J. (2004b). Heuristics for the one-commodity pickup-and-delivery traveling salesman problem. Transportation Science, 38(2), 245-255.
    Hirshberg, A., Holcomb, J. B., & Mattox, K. L. (2001). Hospital trauma care in multiple-casualty incidents: a critical view. Annals of Emergency Medicine, 37(6), 647-652.
    Hunsaker, B., & Savelsbergh, M. (2002). Efficient feasibility testing for dial-a-ride problems. Operations Research Letters, 30(3), 169-173.
    Hwang, K. P., & Wu, C.-H. (2007). Simulation and evaluation of emergency medical services systems resource allocation and performance. Taiwan Journal of Public Health, 26(3), 184-195.
    Iannoni, A. P., Morabito, R., & Saydam, C. (2008). A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways. Annals of Operations Research, 157(1), 207-224.
    Ignall, E., Carter, G., & Rider, K. (1982). An algorithm for the initial dispatch of fire companies. Management Science, 28(4), 366-378.
    Inoue, H., Yanagisawa, S., & Kamae, I. (2006). Computer-simulated assessment of methods of transporting severely injured individuals in disaster—case study of an airport accident. Computer Methods and Programs in Biomedicine, 81(3), 256-265.
    Ioachim, I., Desrosiers, J., Dumas, Y., Solomon, M. M., & Villeneuve, D. (1995). A request clustering algorithm for door-to-door handicapped transportation. Transportation Science, 29(1), 63-78.
    Jenkins, J. L., Mccarthy, M. L., Sauer, L. M., Green, G. B., Stuart, S., L.Thomas, T., et al. (2008). Mass-casualty triage: time for an evidence-based approach. Prehospital and Disaster Medicine, 23(1), 3-8.
    Jia, H., Ordóñez, F., & Dessouky, M. (2007). A modeling framework for facility location of medical services for large-scale emergencies. IIE Transactions, 39(1), 41-55.
    Jih, W.-R., Kao, C.-Y., & Hsu, J. Y.-J. (2002, October 27-30). Using family competition genetic algorithm in pickup and delivery problem with time window constraints. Proceedings of the 2002 IEEE International Symposium on Intelligent Control, Vancouver, Canada.
    Jotshi, A., Gong, Q., & Batta, R. (2009). Dispatching and routing of emergency vehicles in disaster mitigation using data fusion. Socio-Economic Planning Sciences, 43(1), 1-24.
    Kammarti, R., Hammadi, S., Borne, P., & Ksouri, M. (2005, September 13-16). Improved tabu search in a hybrid evolutionary approach for the pickup and delivery problem with time windows. Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, Vienna, Austria.
    Karasakal, O., & Karasakal, E. K. (2004). A maximal covering location model in the presence of partial coverage. Computers & Operations Research, 31(9), 1515-1526.
    Koenig, K. L., Dinerman, N., & Kuehl, A. E. (1996). Disaster nomenclature — a functional impact approach: the PICE system. Academic Emergency Medicine, 3(7), 723-727.
    Kuehl, A. E. (Ed.). (2002). PREHOSPITAL SYSTEMS AND MEDICAL OVERSIGHT (3rd ed.). Dubuque, Iowa: Kendall/Hunt Publishing Company.
    Landrieu, A., Mati, Y., & Binder, Z. (2001). A tabu search heuristic for the single vehicle pickup and delivery problem with time windows. Journal of Intelligent Manufacturing, 12(5-6), 497-508.
    Laporte, G. (2007). What you should know about the vehicle routing problem. Naval Research Logistics, 54(8), 811-819.
    Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408-416.
    Larsen, M. P., Eisenberg, M. S., Cummins, R. O., & Hallstrom, A. P. (1993). Predicting survival from out-of-hospital cardiac arrest: a graphic model. Annals of Emergency Medicine, 22(11), 1652-1658.
    Leclerc, F., & Potvin, J.-Y. (1997). Genetic algorithms for vehicle dispatching. International Transactions in Operational Research, 4(5-6), 391-400.
    Levi, L., Michaelson, M., Admi, H., Bregman, D., & Bar-Nahor, R. (2002). National strategy for mass casualty situations and its effects on the hospital. Prehospital and Disaster Medicine, 17(1), 12-16.
    Li, H., & Lim, A. (2003). A metaheuristic for the pickup and delivery problem with time windows. International Journal on Artificial Intelligence Tools, 12(2), 173-186.
    Lin, C. K. Y., Haley, K. B., & Sparks, C. (1995). A comparative study of both standard and adaptive versions of threshold accepting and simulated annealing algorithms in three scheduling problems. European Journal of Operational Research, 83(2), 330-346.
    Lu, Q., & Dessouky, M. (2004). An exact algorithm for the multiple vehicle pickup and delivery problem. Transportation Science, 38(4), 503-514.
    Lu, Q., & Dessouky, M. M. (2006). A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows. European Journal of Operational Research, 175(2), 672-687.
    Martin, A. (2001). General mixed integer programming: Computational issues for branch-and-cut algorithms. In Junger, M. & Naddef, D. (Eds.), COMPUTATIONAL COMBINATORIAL OPTIMIZATION (Vol. LNCS 2241, pp. 1-25). New York, NY: Springer.
    Messori, A. (1997). Survival curve fitting using the Gompertz function: a methodology for conducting cost-effectiveness analyses on mortality data. Computer Methods and Programs in Biomedicine, 52(3), 157-164.
    Morohosi, H. (2008, October 31–Novemver 3). A case study of optimal ambulance location problems. Proceedings of the 7th International Symposium on Operations Research and Its Applications, Lijiang, China.
    Muyldermans, L., Beullens, P., Cattrysse, D., & Van Oudheusden, D. (2005). Exploring variants of 2-opt and 3-opt for the general routing problem. Operations Research, 53(6), 982-995.
    Nanry, W. P., & Barnes, J. W. (2000). Solving the pickup and delivery problem with time windows using reactive tabu search. Transportation Research Part B, 34(2), 107-121.
    Newgard, C. D., Schmicker, R. H., Hedges, J. R., Trickett, J. P., Davis, D. P., Bulger, E. M., et al. (2010). Emergency medical services intervals and survival in trauma: assessment of the “golden hour” in a North American prospective cohort. Annals of Emergency Medicine, 55(3), 235-246.
    Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research, 41(4), 421-451.
    Ozdamar, L., Ekinci, E., & Küçükyazici, B. (2004). Emergency logistics planning in natural disasters. Annals of Operations Research, 129(1-4), 217-245.
    Pankratz, G. (2005). A grouping genetic algorithm for the pickup and delivery problem with time windows. OR Spectrum, 27(1), 21-41.
    Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008a). A survey on pickup and delivery problems part I: transportation between customers and depot. Journal für Betriebswirtschaft, 58(1), 21-51.
    Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008b). A survey on pickup and delivery problems part II: transportation between pickup and delivery locations. Journal für Betriebswirtschaft, 58(2), 81-117.
    Pell, J. P., Sirel, J. M., Marsden, A. K., Ford, I., & Cobbe, S. M. (2001). Effect of reducing ambulance response times on deaths from out of hospital cardiac arrest: cohort study. British Medical Journal, 322(9), 1385-1388.
    Pentico, D. W. (2007). Assignment problems: a golden anniversary survey. European Journal of Operational Research, 176(2), 774-793.
    Pereira, F. B., & Tavares, J. (Eds.). (2009). BIO-INSPIRED ALGORITHMS FOR THE VEHICLE ROUTING PROBLEM (Vol. 161). Berlin, Heidelberg: Springer.
    Pesik, N., Keim, M. E., & Iserson, K. V. (2001). Terrorism and the ethics of emergency medical care. Annals of Emergency Medicine, 37(6), 642-646.
    Pons, P. T., Haukoos, J. S., Bludworth, W., Cribley, T., Pons, K. A., & Markovchick, V. J. (2005). Paramedic response time: does it affect patient survival? Academic Emergency Medicine, 12(7), 594-600.
    Pons, P. T., & Markovchick, V. J. (2002). Eight minutes or less: does the ambulance response time guideline impact trauma patient outcome? Journal of Emergency Medicine, 23(1), 43-48.
    Potvin, J.-Y. (2009). State-of-the art review--evolutionary algorithms for vehicle routing. INFORMS Journal on Computing, 21(4), 518-548.
    Psaraftis, H. N. (1980). A dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem. Transportation Science, 14(2), 130-154.
    Psaraftis, H. N. (1983). An exact algorithm for the single vehicle many-to-many dial-a-ride problem with time windows. Transportation Science, 17(3), 351.
    Rainer, T. H., Houlihan, K. P. G., Robertson, C. E., Beard, D., Henry, J. M., & Gordon, M. W. G. (1997). An evaluation of paramedic activities in prehospital trauma care. Injury, 28(9-10), 623-627.
    Romundstad, L., Sundnes, K. O., Pillgram-Larsen, J., Røste, G. K., & Gilbert, M. (2004). Challenges of major incident management when excess resources are allocated: experiences from a mass casualty incident after roof collapse of a military command center. Prehospital and Disaster Medicine, 19(2), 179-184.
    Ropke, S., & Cordeau, J.-F. (2009). Branch and cut and price for the pickup and delivery problem with time windows. Transportation Science, 43(3), 267-286.
    Ropke, S., Cordeau, J.-F., & Laporte, G. (2007). Models and branch-and-cut algorithms for pickup and delivery problems with time windows. Networks, 49(4), 258-272.
    Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science, 40(4), 455-472.
    Ruland, K. S., & Rodin, E. Y. (1997). The pickup and delivery problem: faces and branch-and-cut algorithm. Computers & Mathematics with Applications, 33(12), 1-13.
    Sáez, D., Cortés, C. E., & Núñez, A. (2008). Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering. Computers & Operations Research, 35(11), 3412-3438.
    Sacco, W. J., Navin, D. M., Fiedler, K. E., Waddell, R. K., Long, W. B., & Buckman, R. F. (2005). Precise formulation and evidence-based application of resource-constrained triage. Academic Emergency Medicine, 12(8), 759-770.
    Sasser, W. E. (1976). Match supply and demand in services industries. Harvard Business Review, 54(6), 133-140.
    Savelsbergh, M. W. P., & Sol, M. (1995). The general pickup and delivery problem. Transportation Science, 29(1), 107-121.
    Shapira, S. C., & Shemer, J. (2002). Medical management of terrorist attacks. Israeli Medical Association Journal, 4, 489-492.
    Sheu, J.-B. (2007). An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transportation Research Part E, 43(6), 687-709.
    Sheu, J.-B. (2010). Dynamic relief-demand management for emergency logistics operations under large-scale disasters. Transportation Research Part E, 46(1), 1-17.
    Silka, P. A., Geiderman, J. M., & Kim, J. Y. (2001). Diversion of ALS ambulance: characteristics, causes, and effect in a large urban system. Prehospital Emergency Care, 5(1), 23-28.
    Singer, M., & Donoso, P. (2008). Assessing an ambulance service with queuing theory. Computers & Operations Research, 35, 2549-2560.
    Sosna, J., Sella, T., Shaham, D., Shapira, S. C., Rivkind, A., Bloom, A. I., et al. (2005). Facing the new threats of terrorism: radiologists’ perspectives based on experience in Israel. Radiology, 237(1), 28-36.
    Spaite, D. W., Bobrow, B. J., Vadeboncoeur, T. F., Chikani, V., Clark, L., Mullins, T., et al. (2008). The impact of prehospital transport interval on survival in out-of-hospital cardiac arrest: implications for regionalization of post-resuscitation care. Resuscitation, 79(1), 61-66.
    Spaite, D. W., Tse, D. J., Valenzuela, T. D., Criss, E. A., Meislin, H. W., Mahoney, M., et al. (1991). The impact of injury severity and prehospital procedures on scene time in victims of major trauma. Annals of Emergency Medicine, 20(12), 1299-1305.
    Spaite, D. W., Valenzuela, T. D., Meislin, H. W., Criss, F. A., & Hinsberg, P. (1993). Prospective validation of a new model for evaluating emergency medical services systems by in-field observation of specific time intervals in prehospital care. Annals of Emergency Medicine, 22, 638-645.
    Stiell, I. G., Nesbitt, L. P., Pickett, W., Munkley, D., Spaite, D. W., Banek, J., et al. (2008). The OPALS major trauma study: impact of advanced life-support on survival and morbidity. Canadian Medical Association Journal, 178(9), 1141-1152.
    Stone, C. K., & Humphries, R. L. (Eds.). (2008). CURRENT DIAGNOSIS & TREATMENT EMERGENCY MEDICINE (6th ed.): McGraw-Hill.
    Stout, J., Pepe, P. E., & Mosesso Jr., V. N. (2000). All advanced life support versus tiered response ambulances. Prehospital Emergency Care, 4(1), 1-6.
    Swersey, A. J. (1982). A Markovian decision model for deciding how many fire companies to dispatch. Management Science, 28(4), 352-365.
    Tang, J., Zhang, J., & Pan, Z. (2010). A scatter search algorithm for solving vehicle routing problem with loading cost. Expert Systems with Applications, 37(6), 4073-4083.
    Tarantilis, C. D., & Kiranoudis, C. T. (2001). A meta-heuristic algorithm for the efficient distribution of perishable foods. Journal of Food Engineering, 50(1), 1-9.
    Tarantilis, C. D., Kiranoudis, C. T., & Vassiliadis, V. S. (2003). A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. The Journal of the Operational Research Society, 54(1), 65-71.
    Tarantilis, C. D., Kiranoudis, C. T., & Vassiliadis, V. S. (2004). A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. European Journal of Operational Research, 152(1), 148-158.
    Toregas, C., Swain, R., Revelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations Research, 19(6), 1363-1373.
    Toth, P., & Vigo, D. (1997). Heuristic algorithms for the handicapped persons transportation problem. Transportation Science, 31(1), 60-71.
    Tovia, F. (2007). An emergency logistics response system for natural disasters. International Journal of Logistics Research and Applications, 10(3), 173-186.
    Valenzuela, T. D., Roe, D. J., Cretin, S., Spaite, D. W., & Larsen, M. P. (1997). Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model. Circulation, 96(10), 3308-3313.
    Valenzuela, T. D., Roe, D. J., Nichol, G., Clark, L. L., Spaite, D. W., & Hardman, R. G. (2000). Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos. The New England Journal of Medicine, 343(17), 1206-1209.
    Van Der Bruggen, L. J. J., Lenstra, J. K., & Schuur, P. C. (1993). Variable-depth search for the single-vehicle pickup and delivery problem with time windows. Transportation Science, 27(3), 298-311.
    Waalewijn, R. A., Vos, R. D., Tijssen, J. G. P., & Koster, R. W. (2001). Survival models for out-of-hospital cardiopulmonary resuscitation from the perspectives of the bystander, the first responder, and the paramedic. Resuscitation, 51, 113-122.
    Weintraub, A., Aboud, J., Fernandez, C., Laporte, G., & Ramirez, E. (1999). An emergency vehicle dispatching system for an electric utility in Chile. The Journal of the Operational Research Society, 50(7), 690-696.
    White, R. D., Asplin, B. R., Bugliosi, T. F., & Hankins, D. G. (1996). High discharge survival rate after out-of-hospital ventricular fibrillation with rapid defibrillation by police and paramedics. Annals of Emergency Medicine, 28(5), 480-485.
    White, R. D., Bunch, T. J., & Hankins, D. G. (2005). Evolution of a community-wide early defibrillation programme experience over 13 years using police/fire personnel and paramedics as responders. Resuscitation, 65(3), 279-283.
    White, R. D., Hankins, D. G., & Bugliosi, T. F. (1998). Seven years’ experience with early defibrillation by police and paramedics in an emergency medical services system. Resuscitation, 39(3), 145-151.
    Williams, J., Nocera, M., & Casteel, C. (2008). The effectiveness of disaster training for health care workers: a systematic review. Annals of Emergency Medicine, 52(3), 211-222.e212.
    Wu, C.-H., & Hwang, K. P. (2009). Using a discrete-event simulation to balance ambulance availability and demand in static deployment systems. Academic Emergency Medicine, 16(12), 1359-1366.
    Xu, H., Chen, Z.-L., Rajagopal, S., & Arunapuram, S. (2003). Solving a practical pickup and delivery problem. Transportation Science, 37(3), 347-364.
    Yan, S., & Shih, Y.-L. (2009). Optimal scheduling of emergency roadway repair and subsequent relief distribution. Computers & Operations Research, 36(6), 2049-2065.
    Yang, S., Hamedi, M., & Haghani, A. (2005). Online dispatching and routing model for emergency vehicles with area coverage constraints. Transportation Research Record: Journal of the Transportation Research Board, 1923, 1-8.
    Yi, W., & Kumar, A. (2007). Ant colony optimization for disaster relief operations. Transportation Research Part E, 43(6), 660-672.
    Zhao, F., Li, S., Sun, J., & Mei, D. (2009). Genetic algorithm for the one-commodity pickup-and-delivery traveling salesman problem. Computers & Industrial Engineering, 56(4), 1642-1648.
    卓裕仁、及朱佑旌 (2008)。兩階段回溯式門檻接受法求解時窗限制回程取貨車輛路線問題之研究。運輸計劃季刊,37(4),405-430。
    林志豪 (2010)。災難最前線–緊急醫療系統的運作。臺北市:貓頭鷹。
    胡勝川 (1992)。車禍與意外死亡–漸受重視的疾病。台灣醫界,35,255-258。
    蘇喜、石崇良、及陳麗華 (2001)。運用模擬技術建立緊急救護模式及效益評估。行政院國家科學委員會專題研究計畫:NSC89-2314-B-002-383。

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE